Sustainable Remediation Forum (SURF) SURF 29: July 14, 2015 Webinar

Members participated in SURF 29 via webinar on July 14, 2015. ." Individuals that participated in the webinar, along with contact information, are listed in Attachment 1. The two-hour webinar marked the 29th time that various stakeholders in remediation—industry, government agencies, environmental groups, consultants, and academia—came together to discuss the use of sustainability concepts throughout the remediation life cycle. Meeting minutes of the webinar are posted for members at www.sustainableremediation.org. Members should log in and access the minutes by clicking "SURF Meeting Minutes" under "Member Resources."

Welcome

Maile Smith (SURF President) welcomed SURF members to SURF 29. Maile urged participants to continue to be introspective—to document and dissect our practices, while at the same time innovate, share our findings with others, and develop and implement robust standards for sustainable remediation. Although many individuals may view sustainable remediation as optional today, this will not be the case in the long term. Many communities are already facing the impacts of climate variability and have local mandates for climate action planning, resiliency, and adaptation. With that in mind, Maile reviewed how SURF works to improve the state of the practice of remediation through its mission of maximizing the overall environmental, societal, and economic benefits from the site cleanup process by advancing the science and application of sustainable remediation, developing best practices, exchanging professional knowledge, and providing education and outreach. SURF helps its members by:

- Demonstrating alignment between professional practice and organizational sustainability goals
- Providing frameworks, guidance, and tools to help reduce the environmental footprints, costs, and long-term liabilities of remediation sites
- Developing social responsibility and public outreach avenues for implementation in communities
- Providing peer benchmarking (both domestic and international) and access to participate in innovative thinking, research, and real-world application
- Providing in-depth access to leading edge case studies and the project managers and responsible parties implementing them
- Providing networking and collaboration opportunities and access to subject matter experts to help professional development

Updates from Committees and Technical Initiatives

Members provided updates on the recent progress of the Case Study Initiative and Social Aspects of Sustainability Initiative. Summaries of these updates are provided below.

• Case Study Initiative

Amanda McNally (SURF Secretary) provided the status of this initiative and progress to date. Fourteen case studies are complete and posted on the SURF website under the Library menu in the Case Studies folder under Case Study Initiative Database. This database provides a publicly available resource for remediation professionals to use to demonstrate sustainable remediation successes. The goal is to post 20 case studies on the website by the end of the summer. Completed case studies and questions about the initiative may be directed to csi@sustainableremediation.org.

• Social Aspects of Sustainability Initiative

Melissa Harclerode (Initiative Co-Chair) provided the status of the white paper that initiative members are writing (see Attachment 2). Currently the team is compiling revisions and addressing comments received.

Melissa also provided a summary of recent SURF-funded research conducted as part of the social aspect of remediation. The study is being conducted by Montclair State University (MSU) and New Jersey City University (NJCU) to gather information on Jersey City residents' perception of the risk associated with lead contamination in soil and paint on their property. The results of the study will be shared with the Jersey City Department of Health and published in a peer-reviewed journal. SURF's support in this study has two long-term benefits. First, the study introduces NJCU undergraduate students to an important social aspect of remediation: the community's perception of risk to hazardous substances. Second, this study serves as the foundation for similar research as part of SURF's Groundwater Reuse and Conservation Technical Initiative. The public's perceived risk of reusing treated groundwater is a major obstacle to the practice, as noted in SURF's paper on the topic (www.sustainableremediation.org\water).

General Motor's Green Remediation Program

Geraldine Barnuevo (General Motors) provided an overview of her company's green remediation program—from conducting a pilot program to developing programmatic guidelines to applying the guidelines at remediation sites. As a result of these efforts, the company is now working with Region 5 of the U.S. Environmental Protection Agency (USEPA) to integrate green remediation at all of its RCRA sites that are scheduled for closure by 2020. Through its efforts, Geraldine said General Motors has realized the following benefits of green remediation: provides a consistent approach for integrating sustainability, supports other project requirements, illustrates short- and long—term impacts, and promotes enhanced stakeholder collaboration and satisfaction. Presentation slides are provided in Attachment 3. • Phase 1: Pilot Study

The first phase involved a pilot study from which to build a larger program. Data were compiled from a site in the Midwest that was in the investigation stage. Best management practices (BMPs) were identified and incorporated into the project to improve performance in specific areas (e.g., energy consumption, water use, waste generation, health and safety, stakeholder satisfaction). Spreadsheets were created as guidance to help implement the practice and document the benefits and challenges. Lessons learned were derived from a green remediation evaluation and revealed that integrating green remediation does not require a significant level of effort and is part of good business.

• Phase 2: Programmatic Guidelines

Following the success of the pilot study, General Motors began working with USEPA Region 5 to integrate green remediation at its Corrective Measures Proposal facilities. Company programmatic green remediation guidelines were finalized at the end of 2014. The guidelines outline the following four steps for the program: (1) defining the scope (i.e., core elements and boundaries), (2) identifying and implementing BMPs, (3) performing an initial green evaluation during remedy selection and refining the evaluation during the corrective measures implementation, and (4) managing and reporting green remediation data and efforts.

• Phase 3: Guideline Application

Geraldine reviewed two examples of General Motors' green remediation program in action. In the first example at a site in Brazil, two remediation scenarios were compared using green remediation BMPs. In the second example at a site in the Midwest, the environmental impacts of specific core green remediation elements of proposed final corrective measures were evaluated.

Questions after the presentation focused on the environmental footprint methods and approach. In response to whether the ASTM *Standard Guide for Greener Cleanups* was used, Geraldine said that a spreadsheet developed by the USEPA was used to quantify the environmental footprint. The quantification focused on the cleanup alternatives, not raw materials.

Accelerated Site Closure Achieved after System Optimization

Sheri Knox (Amec Foster Wheeler) provided three case studies to demonstrate the value of system modification and/or optimization in achieving progress toward closure. Long-term remediation systems are generally successful but tend to diminish in efficiency over time, leading to potential stagnation and no progress toward the goal (i.e., closure). The case studies below highlight the need to review the remedial approach with stakeholders on a regular basis, avoid becoming complacent (even if the approach is going as planned), and consider the current business climate. Presentation slides are provided in Attachment 4.

• Site #1: Southeast Military Installation

At this site, the soil vapor extraction (SVE) system had been operating for 13 years to treat groundwater contaminated with total petroleum hydrocarbons (TPH). Risk-based closure was not an option. The goal (i.e., closure) was confirmed with the stakeholders and changes in the regulatory view of the site and the possibility of collaboration were discussed. With the responsible party and regulator engaged in problem solving, a plan was developed to demonstrate that a creek located within 250 feet of the contamination would not be impacted. An impact analysis was performed, and historical monitoring results were analyzed to identify trends. Hypothetical rebound was included in fate and transport modeling. With groundwater restrictions now a possibility (vs. 13 years ago), a no further action decision was granted for the site within a year of the reevaluation.

• Site #2: Southeast Military Installation

At this site, the SVE system had also been operating for a long time (14 years) to treat soil and groundwater contaminated with TPH. Again, the goal (i.e., closure) was confirmed with the stakeholders and the possibility of collaboration was discussed. To achieve closure, the vadose zone impacts in the source area needed to be addressed and the receptor (i.e., surface water within 300 feet) needed to be protected. With the groundwater recovery system in need of repair, the groundwater treatment system was rebuilt and restarted to protect surface water (vs. groundwater). In parallel, bioremediation was enhanced in the source area by excavating the smear zone and blending the soil with calcium peroxide. Groundwater remediation was accelerated by injecting stabilized 3% hydrogen peroxide.

The goal is to achieve closure in five years. In the meantime, annual monitoring will reveal potential residual effects of the hydrogen peroxide amendment and be used to determine if additional injections are feasible. In addition, on-site ultraviolet fluorescence testing was used to fingerprint the TPH, which will allow stakeholders to determine if additional excavation is worthwhile.

• Site #3: Former Manufacturing Site

At this site, the pump-and-treat system was operating for 20 years, with most wells continuing to exceed maximum contaminant cleanup levels. Using a collaborative approach, remedial alternatives were reevaluated, the source area was addressed, and risk was incorporated into the developed approach.

After the presentation, participants discussed the closure associated with Site #1. Sheri said that, although risk-based closure was not officially an option, it was negotiated during the collaboration because the regulatory perspective about the site had changed.

Enabling Green and Sustainable Remediation through Contracting Mechanisms

Carol Dona [U.S. Army Corps of Engineers (USACE)] provided an overview of how green and sustainable remediation elements should be integrated when writing contracts. Carol reviewed the importance of identifying the customer, determining the basis for conducting green and sustainable remediation, specifying the level of effort required, and documenting the benefits of green and sustainable remediation before writing the contract. Using these important steps, Josh Van Bogaert (USACE) presented example contract language used for a USACE Formerly Used Defense Site (FUDS) project, the incentives used to increase green and sustainable remediation incorporation and implementation quality, and the results of the project to date. Josh said that the process of incorporating green and sustainable remediation at the contract level is a developing process at the USACE and not yet uniformly implemented across the agency. As such, he encouraged participants to provide feedback on the process. Josh believes that incorporating green and sustainable remediation into performance-based RI/FS contracts is challenging because of potential greenwashing. He emphasized the importance of the documentation step in the process so that the benefits of green and sustainable remediation are recorded and sufficient funding for this work can be maintained. Presentation slides are provided in Attachment 5.

Discussions after the presentation focused on quantifying the results with respect to uncertainty. Although sensitivity analyses are performed for some projects, the particular project presented focused more on identifying and implementing BMPs and performing carbon footprint analyses at the FS stage.

Do Green and Sustainable Remediation Frameworks Adequately Represent Ecosystem Services and Natural Resources?

Jonathon Weier (CH2M) began his presentation with an answer to the above question: no. He explained that optimizing the net environmental benefit – the change in ecosystem services between the pre- and post-remediation landscape – is often not considered in remediation decision making. Jonathon defined ecosystem services as the benefits that people gain from natural resources. He believes that ecosystem services and natural resources are under-represented in remediation decision making because of the following:

- An evolution of focus
- The lack of pre- vs. post-remediation landscape in guidance
- Ineffective communication of value
- Lack of ecologists included in decision making during the FS stage
- The myth that "changes in nature are too difficult to quantify"

Jonathon emphasized the importance of including ecosystem services in the process by (1) explaining the options available to address ecosystem service changes; (2) reminding

participants that contamination impairs and remediation influences ecosystem services; and (3) demonstrating the importance of the relationships between cost, risk, and net environmental benefit. He presented three examples showing how changes to ecosystem services can be quantified over time. Jonathon ended his presentation by listing several characteristics that make a remediation site a good candidate for a net environmental benefit analysis (NEBA). Presentation slides are provided in Attachment 6. For more information on the types of ecosystem services and a link, visit

http://www.millenniumassessment.org/documents/document.300.aspx.pdf.

Attachment 1 SURF 29 Participant Contact Information

Name	Affiliation	Phone Number	Email
Anderson, Dave	Haley & Aldrich	(208) 866-1142	danderson@haleyaldrich.com
Aragona, Keith	Haley & Aldrich	(734) 887-8402	karagona@haleyaldrich.com
Bakrania, Bella	O'Brien & Gere	(484) 804-7306	bella.bakrania@obg.com
Barinka, Lou	EA Engineering	(972) 459-5023	lbarinka@eaest.com
Barnuevo, Geraldine	GM	(248) 255-2790	geraldine.barnuevo@gmail.com
Bealer, Buddy	Shell	(484) 632-7955	leroy.bealer@shell.com
Beedle, Michael	U.S. Environmental Protection Agency	(312) 353-7922	beedle.michael@epa.gov
Best, Danielle	EA Engineering	(907) 646-0206	dbest@eaest.com
Borski, Jennifer	Wisconsin Dept. of Natural Resources	(920) 424-7887	jennifer.borski@wisconsin.gov
Brncich, Dee	Brncich Environmental Consulting	(630) 755-6100	dbrncich@brnenvcon.com
Bruning, Sue	Cascade Drilling	(206) 795-5369	sbruning@cascadedrilling.com
Burchette, John	U.S. Environmental Protection Agency	(703) 603-8807	burchette.john@epa.gov
Butler, Brandt	AECOM	(610) 832-3575	brandt.butler@aecom.com
Casunuran, Vergel	Booz Allen Hamilton	(210) 244-4220	casunuran_vergel@bah.com
Cheng, Lok	Shell	(012) 343-6173	lok-cheng.wong@shell.com
Crockford, Graham	TRC Environmental Corporation	(734) 904-3304	gcrockford@trcsolutions.com
DeFrancesco, Christina	O'Brien and Gere	(919) 987-3090	Christina.DeFrancesco@obg.com
DePasquale, Dan	U.S. Environmental Protection Agency	(202) 564-8109	DePasquale.Daniel@epa.gov
Erickson-Mulanax, Emerald	Farallon Consulting	(425) 295-0825	eerickson@farallonconsulting.com
Esfandiari, Farah	California EPA	(916) 934-4327	fesfandi@dtsc.ca.gov
Favara, Paul	СН2М	(352) 384-7067	pfavara@ch2m.com
Finn, Molly	U.S. Environmental Protection Agency	(312) 886-6173	finn.molly@epa.gov
Fiorenza, Stephanie	BP	(713) 291-1485	Stephanie.Fiorenza@bp.com
Garson, Nick	Boeing	(425) 269-7866	nick.garson@boeing.com
Gill, Michael	U.S. Environmental Protection Agency	(415) 972-3054	gill.michael@epa.gov

Name Affiliation		Phone Number	Email
Glenn, Christopher	Langan Treadwell Rollo	(510) 384-2626	cglenn@langan.com
Goldblum, Deb	U.S. Environmental Protection Agency	(215) 814-3432	goldblum.deborah@epa.gov
Gorrin, Manuel	N/A	(236) 999-7854	manuelgorrin@gmail.com
Hadley, Paul	Self	(530) 601-8666	Hadley1304@aol.com
Hare, Danielle	AECOM	(860) 263-5865	danielle.hare@aecom.com
Harrison, Sebastian	Chemours	(631) 988-5635	Sebastian.P.Harrison@chemours.com
Hasegan, Diana	GHD	(206) 250-4651	Diana.Hasegan@GHD.com
Healy, Erin	Anchor QEA	(978) 996-3054	ehealy@anchorqea.com
Holland, Karin	Haley & Aldrich	(443) 845-7817	kholland@haleyaldrich.com
Hou, Deyi	Parsons	(925) 941-3741	deyi.hou@gmail.com
Hynds, Erin	Cardno	(412) 694-7046	erin.shay@cardno.com
Johnson, Dan	SCS Engineers	(858) 571-5500	abarrow@scsengineers.com
Jones, Cory	SCS Engineers	(858) 571-5500	cjones@scsengineers.com
Kiaalhosseini, Saeed	Colorado State University	(970) 492-9277	saeedkia@engr.colostate.edu
Kwan, Joe	Northrop Grumman Corporation	(310) 332-5057	joe.kwan@ngc.com
Liddell, Colleen	Ford Motor Company	(313) 322-9834	csliddell2003@yahoo.com
Liddell, Colleen	Ford Motor Company	(313) 322-9834	ckoch1@ford.com
Mancini, Kristin	ARCADIS	(415) 432-6908	kristin.mancini@arcadis-us.com
Margaretich, Marisa	The Boeing Company	(562) 797-1335	marisa.k.margaretich@boeing.com
Mazur, Daniel	U.S. Environmental Protection Agency	(312) 353-7997	mazur.daniel@epa.gov
McNally, Amanda	AECOM	(412) 316-3506	amanda.mcnally@aecom.com
Messina, Frank	ExxonMobil Environmental Services Company	(908) 474-6202	frank.j.messina@exxonmobil.com
Messina, Frank	ExxonMobil Environmental Services Company	(908) 474-6202	frank.j.messina@exxonmobil.com
Meyers, Mark	Anchor QEA	(201) 571-0926	mmeyers@anchorqea.com
Miles, Tiffany	U.S. Environmental Protection Agency	(202) 564-4306	miles.tiffany@epa.gov

Name	Affiliation	Phone Number	Email
Mixon, Currie	GEI Consultants, Inc.	(919) 322-8703	curriemixon@gmail.com
Mondal, Pulin	University of Toronto	(416) 978-6069	pulin.mondal@mail.utoronto.ca
Moore, Beth	U.S. Department of Energy	(703) 989-2563	beth.moore@em.doe.gov
Morgan, James	National Grid	(315) 428-3101	james.f.morgan@nationalgrid.com
Morris, Kevin	ERM	(484) 467-8623	kevin.morris@erm.com
Moxley, Katie	The Boeing Company	(425) 237-1905	kathryn.l.moxley@boeing.com
Muzzio, Joe	Reterro, Inc.	(408) 429-4624	jmuzzio@reterro.com
Nair, Deepti	Battelle	(510) 846-5935	naird@battelle.org
Novotny, Sandra	Nova & Associates	(301) 946-1614	sandra.novotny@novaee.us
O'Connell, Shannon	Parsons	(626) 440-6251	Shannon.oconnell@parsons.com
Olson, Mitch	Trihydro	(970) 492-6026	molson@trihydro.com
Ossher, Ashley	Wildlife Habitat Council	(240) 247-0924	aossher@wildlifehc.org
Pagano, Yollanda	O'Brien and Gere	(484) 804-7221	yolanda.pagano@obg.com
Patton, Kenneth	AECOM	(805) 490-5869	kenneth.patton@aecom.com
Peschman, Tim	Evoqua Water Twchnologies	(612) 308-9243	timothy.peschman@evoqua.com
Peterson, Edward	General Motors	(313) 506-9465	ed.e.peterson@gm.com
Pittenger, Scott	Norflok Southern	(404) 582-4236	scott.pittenger@nscorp.com
Potter, Thomas	Massachusetts Dept. of Environmental Protection	(617) 292-5628	Thomas.Potter@state.ma.us
Potter, Thomas	Massachusetts Dept. of Environmental Protection	(617) 292-5628	Thomas.Potter@state.ma.us
Robbins, Donald	Port of Seattle	(206) 787-4918	robbins.d@portseattle.org
Schneider, Dan	Terracon Consultants, Inc.	(303) 454-5247	Dan.Schneider@terracon.com
Smith, Maile	Northgate Environmental Management, Inc.	(510) 839-0688	maile.smith@ngem.com
Sohl, John	Columbia Technologies	(301) 455-7644	jsohl@columbiatechnologies.com
Song, Ying	Amec Foster Wheeler	(949) 764-1581	ying.song@amecfw.com
Swain, Shella	Pioneer Technologies Corporation	(360) 570-1700	swains@uspioneer.com

Name	Affiliation	Phone Number	Email
Thom, Aaron	ExxonMobil	(832) 544-3413	aaron.thom@exxonmobil.com
Tipton, Karina	Brown and Caldwell	(201) 574-4719	ktipton@brwncald.com
Torrens, Jake	Amec Foster Wheerler	(510) 663-4251	jake.torrens@amec.com
Tucker, Lynn	Ford Motor Company	(313) 248-7552	ltucke33@ford.com
Vanderkooy, Matt	Geosyntec Consultants	(519) 404-2772	mvanderkooy@geosyntec.com
Venkatasubramanian, Sowmya	Parsons	(626) 440-6025	Sowmya.Venkat@parsons.com
Vila, Paloma	Roux Associates	(856) 832-3756	pvila@rouxinc.com
Wice, Rick	Tetra Tech	(412) 298-5922	rick.wice@tetratech.com
Yelken, Mary	The Yelken Group, Inc.	(402) 325-9615	myelken@theyelkengroup.com

Attachment 2

Update: Social Aspects of Sustainability Initiative

Social Aspect Technical Initiative

Objectives:

 is researching and writing a <u>White Paper (journal</u> article) to present on the current state of the practice for <u>evaluating impacts to the social component</u> of sustainability during <u>remedial activities</u>

Status:

- <u>To Date:</u> *Received contributions* from institutions at an international level (see team members)
 - First round of review completed
- <u>Presently:</u> Compiling revisions/addressing comments

• <u>Future Milestone Dates:</u>

- Second round of review (mid-August/September 2015)
- Compile revisions/integrate comments (October/November 2015)
- Submit to journal for publication (December 2015)

Team Members:

- Lead Melissa Harclerode (SURF)
- Additional Represented Organizations:
 - SURF Canada
 - SURK UK
 - SURF Taiwan
 - SURF Italy
 - ISO
 - Common Forum
 - NICOLE
 - Academic Representatives
 - University of Venice
 - University of Nottingham
 - Montclair State University

Contact:

- Melissa.Harclerode@sustainableremediation.org
- Phone: 732-590-4616

Completed by: Melissa Harclerode Date: 07/14/2015

SURF Funded Research: Social Aspect of Remediation

- Risk Perception Survey: gauge individuals' opinions/mitigation efforts on exposure
 - Address non-point source pollution (e.g., historic fill material, lead-based paint)
 - o Identify education and outreach needs (Jersey City Department of Health)

*Study will serve as a <u>foundation to conduct similar research</u> for the SURF <u>Groundwater Reuse and Conservation Technical Initiative</u>

• The public's perceived risk of re-using treated groundwater

Completed by: Melissa Harclerode Date: 07/14/2015

Attachment 3

General Motors' Green Remediation Program

General Motor's Green Remediation Program

SURF Webinar 14 July 2015

Customer driven sustainability

then apply GM resources to design and build that vehicle in the most environmentally sustainable and socially responsible manner possible.

With respect to Sustainability, as in all things, our focus is our

Why Integrate Green Remediation?

- Aligned with GM's manufacturing sustainability commitments
- Supports other remediation project goals (efficiency, protection of human health and the environment)
- Encouraged in several states and/or by certain regulators

<u>GM</u>

Pilot Approach

<u>GM</u>

Incorporation of BMPs

Focus on specific metrics to improve performance:

- GHG emissions/energy consumption
- Water use
- Waste generation
- Health & safety
- Stakeholder satisfaction

BMP Implementation

- Responsibilities assigned to each BMP
- Implementation guidance provided
- Benefits and challenges identified
- Implementation progress recorded

E	Energy Consumption	GOAL: Reduce e	nergy intens	ity & greenhouse gas (GHG) emi	ssions during	the impleme	ntation of RCRA Co	orrective Ac	tio:	n	
No.	Methods/Best Management Practices	Metric	Responsible	Implementation Guidance	Implemented Yes/No	Benefits	Challenges	Notes	J	F	м
	Evaluate Investigation Methods										
1.1	Use in situ data loggers wherever appropriate to monitor water levels		D. Putz/ D. Breedon	 Identify where data loggers will be beneficial. GM to acquire additional data loggers. 	Yes	Reduces trips to the field for manual water level measurements.	To purchase enough transducers and to reuse them.				
1.2	Utilize direct-push technology for soil sampling where feasible		G.Barnuevo/ D. Putz	 Review investigation areas. Identify options where traditional techniques can be substituted by direct-push (e.g. groundwater grab samples versus monitoring wells). 	Yes	A cheaper alternative to traditional drilling.					
1.3	Ensure equipment/techniques used on site match requirements and minimize days in the field (e.g. sonic vs hollow)		G.Barnuevo/ D. Putz	 Review drilling techniques with contractors during the planning stages of field investigation. Jeantify equipment that are oversized for the task at hand and replace this equipment with equipment that match site requirements where feasible. 	Yes	Reduces cost and fuel use, complete task faster.	Identify "right-sized" equipment for task (e.g. Geoprobe was often underpowered for TOR sampling).				

<u>GM</u>

Green Remediation Evaluation

				692
Core element	Metric	Units	Footprint (no BMPs)	Footprint (BMPs)
Matorials 8	Refined materials	Tons	2	2
Waste	% refined materials from recycled sources	%	0%	27%
Energy	Total energy used	MMBtu	2,005	1,991
	Total GHG emissions	Tons CO2e	160	159
Air	Total NOx, SOx and PM emissions	Pounds	2,538	2,523

http://cluin.org/greenremediation/methodology/

Lessons Learned during Pilot

✓ Green remediation integration doesn't require significant

levels of effort

✓ Effective planning:

<u>GM</u>

- Significantly reduces impacts
- Ensures sustainability considered throughout project
- ✓ Appropriate drilling technique may reduce air emissions, and energy, waste and water use
- ✓ Pilot logged 3132 hours without accidents or incidents onsite
- ✓ Enhanced communications prevented delays/standby time
- ✓ Green remediation incorporated into future site activities

\checkmark \rightarrow part of GOOD BUSINESS

<u>GM</u> 11

Phase 2: Programmatic Green Remediation Guidelines

Objective: incorporate/evaluate green remediation for Corrective Measures Proposal (CMP) facilities

Step 1: Scope

<u>GM</u>

Step 2: BMPs

GM LIST OF BEST MANAGEMENT PRACTICES							
		Core Element Addressed (at Site Level)			Applicable?	Employed at the site?	
Best Management Practice	Energy	Air	Water	Materials and Waste	Y/N	Y/N	Notes
Use of the greenest remediation technology or approach,							
considering all controlling parameters (e.g., cost, time,	Х	Х	Х	Х			
remediation goals, land reuse, technical restrictions)							
Consider emerging technologies to lower environmental impacts	Х	Х	Х	Х			
Reexamine and update the conceptual site model as necessary	Х	Х	Х	Х			
Identify opportunities to create habitat as part of site remediation			Х				
Reduce fugitive dust/volatile emissions during on-site operations and storage (e.g., covering, biodegradable foam, watering)		х					
Retrofit machinery with clean diesel or other technologies for cleaner engine exhaust		х					
Reduce fugitive dust/volatile emissions during off-site shipment (e.g., covered hauling trucks)		х					
Use cleaner fuel, where available		Х					
Evaluate on-site and in situ treatment and containment	v	v		v			
technologies to determine whether they provide lower emissions	X	X		X			
Select technologies that reduce duration of drilling, pumping/purging, and other sources of site-related emissions	Х	х					

Step 4: Data Management and Reporting

Internal requirements:

- Record green remediation data in real time
- Assigned team member should record data

External requirements:

Green remediation included in documentation submitted to regulatory agency(ies)

Phase 3: Guidance Application Example 1

Green remediation comparison of two remediation scenarios, Brazil:

- Scenario 1: Installing an impermeable cap
- Scenario 2: Employing an existing permeable soil cover

OUTPUT	UNIT	SCENARIO 1 IMPERMEABLE CAP	SCENARIO 2 PERMEABLE SOIL COVER
Total Greenhouse Gas Emissions	tons CO ₂ e	1,367	1,320
Total Energy Consumption	MMBtu	25,454	18,900
Refined Material Consumption	tons	249	63
Unrefined Material Consumption	tons	96,188	167,674
Non-Hazardous Solid Waste Production	tons	1,060	1,060
Land and Ecosystem		Qualitative	Qualitative

<u>GM</u>

Guidance Application Example 2

Green remediation integration into a CMP, Midwest USA:

- Overview of green remediation approach in main report
- Dedicated green remediation appendix

The proposed final correctiv positively and negatively). The second sec	e measures have been evaluated t his evaluation considers the follow	o identifyenvi ingenvironme	ronmental impacts (both ntal core elements:		
Air emissions	OUTPUT	UNIT		ALTERNATIVE	
 Energy Water Materials 	AOI-23 Site Groundwate	r	Alternative 1 - Baseline and Above- Baseline Institutional Controls and Groundwater Monitoring Program	Alternative 2 - Baseline and Above- Baseline Institutional Controls and Groundwater Extraction	Alternative 3 - Baseline and Above- Baseline Institutional Controls and Enhanced Bioremediation
Waste	Total Greenhouse Gas Emissions	tons CO2e	1.40	939	1,426
	Material Consumption	pounds	0	0	961
	Solid Waste Production	tons	0	0	0.43
	Total Energy Consumption	MMBtu	16.7	15,407	23,467
	Groundwater Extraction	gallons	0	315,360,000	946,080,000
	Land and Ecosystem		Qualitative	Qualitative	Qualitative

Benefits of Green Remediation Efforts

- Consistent approach for integrating sustainability
- Buy in from project teams ensures positive results
- Supports other project requirements
- Illustrates short- and long-term impacts:
 - Highlights the life cycle impact drivers
- Promotes enhanced stakeholder collaboration and satisfaction
- Ensures continuous improvement

<u>GM</u>

Questions?

Attachment 4

Accelerated Site Closure Achieved after System Optimization

Accelerated Site Closure Achieved After System Optimization

Battelle - May 2015

amec foster wheeler

Background

Challenge

Progress Toward Closure Requires System Modification/Optimization

Site #1- Southeast Military Installation

- Maintenance Shop
- ► Fuel Dispenser/UST
- ▶ Release of Gasoline Early 2000s
- Creek within 250 feet

Engaged to Perform Operation & Maintenance

- ▶ Remedy In Place Thirteen Years
- 8 Vacuum Enhanced/Groundwater Recovery Wells
- ► 31 Air Sparge Wells
- ► 5 Passive Vents

7

Helpful Tip: If numerous wells are planned that have no well head cover, consider adding a tracer wire, so they can easily be located for repairs or demolition.

Site #1- Southeast Military Installation

Recognize and Convey

- Confirm the Goal with Stakeholders
- ► Technologies/Approach May Change
 - What was once a "glass slipper"
- Changes in Regulatory View of Site
- Collaboration is Possible (find out)

Site #1- Southeast Military Installation

Solution

9

- ► Goal is Closure for Site #1
 - Risk-Based Closure is Not An Option
- Initiated Conversations with Regulatory Agency
- Client and Regulatory Agency Engaged in Problem Solving

Decision Point Toward Closure

Demonstrate That The Creek Will Not Be Impacted

Site #1- Southeast Military Installation

11

Site #1- Southeast Military Installation

Implement Plan

- Mann-Kendall Trend Analysis
 - Benzene & Naphthalene
 - No Upward Trend in Monitoring Wells With Residual Impacts
- Fate & Transport Modeling via BIOSCREEN
 - Naphthalene
 - Groundwater Seepage Velocity = 8 ft/yr
 - 1st Order Decay = 0.27 per year
 - Including Hypothetical Rebound

Released September 2014 Within a Year

- Maintenance Shop
- ► Fuel Dispenser/UST
- ► Release of Fuel
 - Soil and Groundwater
- Surface Water within 300 feet

15

Site #2- Southeast Military Installation

Engaged to Perform Operation & Maintenance

- ▶ Remedy In Place 14 Years
- ► 7 Soil Vapor Extraction Wells
- ► 7 Dual Phase Extraction Wells
- ▶ 3 Groundwater Recovery Wells

Site # 2- Southeast Military Installation

Solution

- ► Goal is Closure for Site #2
- Initiated Conversations with Regulatory Agency
- Client and Regulatory Agency Engaged in Problem Solving

Decision Point Toward Closure

Address Vadose Zone Impacts in the Source Area & Protect Receptor

Site # 2- Southeast Military Installation

Implement Collaborative Plan

- ► Re-Build System
 - Re-Start Groundwater Treatment System to Protect Surface Water (Not Groundwater)
- ► Enhance Bioremediation
 - Excavate Smear Zone & Soil Blending - Calcium Peroxide
- Accelerate Groundwater Remediation
 - Pilot Test Inject Stabilized 3% Hydrogen Peroxide

Concentration Vs Time 3% Stabilized Hydrogen Peroxide

Site # 2- Southeast Military Installation

Implement Collaborative Plan

- ► Enhance Bioremediation
 - Excavate Smear Zone & Soil Blending - Calcium Peroxide

19

Accelerated Progress Toward Closure

Plan In Progress – Closure in 5 Years

Site #3 – Former Manufacturing Site

- Release of TCA & MEC
- Wetlands Near By
- ► Water-Supply Wells Nearby

23

Site #3 – Former Manufacturing Site

Engaged to Perform Site Optimization

- ▶ Remedy In Place 20 Years
 - Most Wells Exceed MCL Style Clean Up Levels
- Historical Soil Excavation
- 18 Groundwater Recovery Wells
- Discharges 1.5 M Gal a month

24

Decision Point Toward Closure

Revaluate & Update Entire Approach

Site # 3 – Former Manufacturing Site

Collaborative Planning

- Re-Evaluate Remedial Alternatives
 - Year Shut-Down Testing
 - Modelling
 - Aggressive Monitoring
- Address Source Area
 - Insitu Source Area Treatment
 - Assist MNA
- Incorporate Risk Within Approach

Summary/Lessons Learned - Bringing the Pieces Together

- Review Approach with Stakeholders on a Regular Basis
 - If Regulations Continue Toward Risk-Based Closure
 - Further Optimization May Be Required
- Avoid Becoming Complacent
 - Even if Approach is "Going as Planned"
- Consider Current Business Climate
 - Client's Intermediate Goals
 - Client's Ultimate Goals

QUESTIONS

Sheri Knox Amec Foster Wheeler 4021 Stirrup Creek Road Durham, NC T (919) 381-9918 <u>sheri.knox@amecfw.com</u> amecfw.com

Attachment 5 Enabling Green and Sustainable Remediation through Contracting Mechanisms

Enabling Green and Sustainable Remediation with Contracting Mechanisms

Carol Lee Dona, Ph.D, P.E.

U.S. Army Corps of Engineers, Environmental and Munitions Center of Expertise

Josh Van Bogaert, P.E. U.S. Army Corps of Engineers, Louisville District

Presentation Topics

Pre-Contracting

- ► Customer
- Basis of GSR/GR
 - Agency Policy/Guidance
 - Approach
- Level of Effort
 - Best Management Practice List Evaluation
 - Quantitative Footprinting
- When will GSR be applied
- Documentation
- Example Contract Language
 - ► USACE Formerly Used Defense Site (FUDS) project

2

Conclusions and Path Forward

	Basis - Agency Guidance and Policy
ſ	Department of Defense policy: Consideration of GSR practices in the Defense Environmental Restoration Program (August 2009), updated in: Defense Environmental Restoration Program Management Manual 4715.20 (March 9, 2012)
•	US Navy: <i>Guidance on Green and Sustainable Remediation</i> , UG-2093- ENV, Rev 1 (5 April 2012)
	USACE: Decision Framework for Incorporation of Green and Sustainable Practices into Environmental Remediation Projects, (March 5, 2010), updated in: Detailed Approach for Performing Green and Sustainable Remediation (GSR) Evaluations in Army Environmental Remediation (August 2012)
•	US Air Force adoption of GSR approaches including Performance Based Contracting
	Department of Energy GSR contracting policy for cleanups
	EPA: Encouraging Greener Cleanup Practices through Use of ASTM International' s Standard Guide for Greener Cleanups (December 2013)
•	EPA Regions 1 to 10: Region-specific Green Remediation policies
7	
U.S	ARMY 5 BUILDING STRONG®

	Evaluation of BMPs	Footprint Quantitative Evaluation
Description	Enhance the remedial project by incorporating sustainable methods – this involves implementing BMPs.	A quantitative decision takes a holistic view of the remedy or a portion of the remedy. Using specially designed GSR software, this approach considers the project design, metric evaluation, and life-cycle cost.
Time Commitment ^a	2-24 hrs	40-60 hrs - BMPs with footprint evaluation, 80-100 hrs - BMPs with a full life cycle assessment (LCA)
Cost ^b	\$1K – \$5K	\$10 -\$15K
When to Intervene	Anytime during the cleanup or closure process.	Most often during the Feasibility Study, Remedy Design, Remedy Operation, and Long-Term Operation. Less likely in Investigations and construction.
Example	Can be as simple as replacing diesel fuel with low-sulfur diesel or more complex, such as inclusion in a decision document a less energy- intensive technology for polishing.	Using quantitative analysis to determine that the use of in situ remediation technique instead of pump and treat reduces energy requirements, GHGs, and enables achievement of cleanup metrics in a shorter amount of time with less cost.
 a Information f for Greener Clu Environmental b From the 201 these costs will 	rom C.F. Silver, D.R. Goldblum, and J.A. Simo eanups", presented at the Third International S Technologies, Miami, FL, 20 May 2015, does a 2 Army GSR Study <u>http://www.fedcenter.gov/C</u> I vary depending on the complexity of the site.	n, "The Growing Impact of ASTM's New Standard Guide ymposium on Bioremediation and Sustainable not include GR implementation and documentation. <u>Nocuments/index.cfm?id=22322&pge_prg_id=27392</u> -

Documentation

Goals of documentation are:

- To document the results if a BMP evaluation is performed
- To provide a framework for the customer to participate in the decision-making during GSR evaluation and implementation
- To record the footprint reductions for project records and any upward reporting
- To provide a transition for any GSR that may be implemented in subsequent remedial phases

11

BUILDING STRONG

Example GSR BMP Evaluation In-Situ Injection Remedy

Best Management Practice	Step 1 Applicable or Rationale if Not Applicable	<i>Step 2</i> Priority	Step 3 Selected or Rationale if Not Selected	Step 4 Implemented or Rationale if Not Implemented
BMP 1 – Consider purchase of renewable energy certificates (RECs)	\bigotimes	Low	Policy did not allow	N/A
BMP 2 – Consider on-site treatment and re-use of soil instead of off-site disposal	No soil remediation	N/A	N/A	N/A
BMP 3 - Use by-products or "waste" materials from local sources in place of refined chemicals or materials	\bigotimes	Med	Ø	Substitute substrate
BMP 4 – Establish decision points to trigger a change from one technology to another	Ø	High	\bigotimes	Decision deferred
BMP 5 – Use extracted and treated water for beneficial purposes	No extracted groundwater	N/A	N/A	N/A
BMP 6 – Contribute to local economy as possible	\bigotimes	Low	\bigotimes	Implemented
BMP 7 – Use appropriate characterization or remedy approach based on site conditions	\bigotimes	High	Ø	Implemented

Incentives Increase GSR Quality and Implementation

"The Contract will include a performance incentive for the incorporation of GSR...equal to 2% [modify % as needed] ...measured and paid at appropriate milestone intervals.....

The incentive goals are: [modify as necessary....]. Waste minimization/diversion – 50% Energy savings/green energy – 50% Water savings – 50% Other (includes other goals listed in Section X.X.X....and those proposed by the Contractor) – 100%

Can also include weighting factors to indicate importance of each metric

BUILDING STRONG_®

Questions?

Contact

Carol Lee Dona, Ph.D., P.E. US Army Corps of Engineers Environmental and Munitions Center of Expertise Omaha, NE carol.l.dona@usace.army.mil

Josh Van Bogaert, P.E. US Army Corps of Engineers Louisville District (ED-E) Louisville, KY Joshua.Vanbogaert@usace.army.mil

21

BUILDING STRONG®

Attachment 6

Do Green and Sustainable Remediation Frameworks Adequately Represent Ecosystem Services and Natural Resources?

Do GSR Frameworks Adequately Represent Ecosystem Services and Natural Resources?

SURF 29

Jonathon Weier July 14, 2015

Innovation that Provides Sustainable Solutions to Complex Local Challenges, Worldwide

© 2015 CH2M HILL

Contents

- Definition of ecosystem services (ES)
- Why are ES and natural resources under-represented?
- The importance of inclusion

Voting NO because optimizing net environmental benefit – the change in ecosystem services between the pre- and post-remediation landscape – is often not considered in remediation decision-making.

Innovation that Provides Sustainable Solutions to Complex Local Challenges, Worldwide

WHY? There has been an evolution of focus

Abating risk

Assessing the impacts of the act of applying the remedy

Maximizing benefit in the post-remediation landscape

4 Innovation that Provides Sustainable Solutions to Complex Local Challenges, Worldwide

WHY? Guidance has not been focused on the pre- vs. post-remediation landscape

- Protect Land and Ecosystems
 - Minimize areas requiring activity or use limitations
 - Minimize unnecessary soil and habitat disturbance or destruction
 - Minimize noise and lighting disturbance

5 Innovation that Provides Sustainable Solutions to Complex Local Challenges, Worldwide Ch2nn;

WHY? Ecologists are not at the table during the FS stage

7 Innovation that Provides Sustainable Solutions to Complex Local Challenges, Worldwide Ch2

WHY? A myth – "Changes in nature are too difficult to quantify!"

Options are available to address ecosystem service changes

Innovation that Provides Sustainable Solutions to Complex Local Challenges, Worldwide

Contamination impairs ecosystem services

Flora and fauna are impacted Loss of ecological function Land uses are constrained

Remediation influences ecosystem services in several ways

All these (+) and (–) are often not considered and rarely quantified.

Impacts of Remediation	+ or -
Reduce ecological risk	+
Enable/constrain land uses (reduce human health risk)	+ or -
Eliminate/degrade habitat	-
Create or restore habitat	+
Leave residual risk	-

11 Innovation that Provides Sustainable Solutions to Complex Local Challenges, Worldwide Ch2nne

• Ability to see remedies that....

- Provide no or little net benefit
- Provide no or little benefit at a high \$ cost
- Cause more harm than good
- Provide an opportunity to increase ES value
- Maximize benefit at the least cost

Changes to Ecosystem Services Can Be Quantified Over Time

Ecological Services

Habitat equivalency analysis (HEA)

Environmental metric (SAY: services provided per hectare per year)

Use Services (\$\$\$)

Revealed preferences

Cost-based approaches

Stated-preference approaches

Passive Human Use Services (\$\$\$)

ch2m

Stated-preference

13	Innovation that Provides Sustainable Solutions to Complex Local Challenges, Worldwide	ch2m
----	---	------

NEBA Example - Solvents in Groundwater

Bottom Line: \$70 M would have been spent to eliminate \$12,000 in lost groundwater irrigation value

	Human Use Loss (NPV)	Human Risk /ARAR Profile	Ecological Risk Profile	Cost of Remedial Alternative (NPV)
No Action	\$44,000	Not Protective	No Risk	\$0
Land Use Controls	\$44,000	Not Protective	No Risk	\$130,000
GW Monitoring/ Hydrologic Ctrl	\$44,000	Not Protective	No Risk	\$1,300,000
<i>In Situ</i> with Other Actions*	\$44,000	Protective	No Risk	\$1,900,000
<i>In Situ</i> Chemical Ox-whole plume	\$32,000	Protective	No Risk	\$71,500,000

* In Situ Chemical Oxidation of TCE Plume, Enhanced Natural Attenuation of Benzene Plume, Plume Containment, and Groundwater Monitoring

NEBA Example – Wood Treating Site

Bottom Line: \$1.3 - 2.5 M would be spent with no significant environmental benefit

No Further Action Alternative	Acreage	Ecological Services (dSAYs)	Cost (\$)
Wetland	5.6	187	-
Stream	0.06	1.5	-
Forest	1	17	-
TOTAL	6.66	206	0
Removal Alternative	Acreage	Ecological Services (dSAYs)	Cost (\$)
Wetland - Remediated	2.3	73	-
Wetland – Not Remediated	3.3	113	-
Stream - Remediated	0.02	1	-
Stream – Not Remediated	0.04	1.4	-
Forest - Cleared	1	15	-
TOTAL	6.66	203	1.3 – 2.5 \$ M

Innovation that Provides Sustainable Solutions to Complex Local Challenges, Worldwide

NEBA Example – Marine Sediment

Bottom Line: Unnecessary environmental impacts were avoided and EPA saved \$6 M in remediation costs

- State Marine Superfund Site, TX
- Alternatives
 - No Further Action
 - Monitored Natural Attenuation
 - Removal
- NEBA with Feasibility Study
- Results
 - Demonstrated that sediment removal would not be protective of the environment

Innovation that Provides Sustainable Solutions to Complex Local Challenges, Worldwide

ch2m

There are Several Characteristics that Make a Site a Good NEBA Candidate

Marginal ecological risks Potential for remediation-related impacts Presence of high value habitat Disproportionate cost to benefit Difficulty reaching resolution Costly remedy Large and complex Need to prioritize actions Risk of recontamination Ongoing anthropogenic degradation

17 Innovation that Provides Sustainable Solutions to Complex Local Challenges, Worldwide

Contact: Jonathon Weier Jonathon.Weier@ch2m.com 678-451-8287

Innovation that Provides Sustainable Solutions to Complex Local Challenges, Worldwide

© 2015 CH2M HIL