Sustainable Remediation Forum (SURF) SURF 20: July 24 through 26, 2012 Fort Collins, Colorado

SURF 20 was held at Colorado State University (CSU) in Fort Collins, Colorado from July 24 through 26, 2012. SURF members that participated in the three-day meeting are listed in Attachment 1. Participant contact information is available to members on the SURF website. After logging into the website, select "member resources," "presentations," and "SURF 20 presentations."

The meeting marked the 20th time that various stakeholders in remediation—industry, government agencies, environmental groups, consultants, and academia—came together to develop the ability to use sustainability concepts throughout the remediation life cycle. Previous meeting minutes are available at http://www.sustainableremediation.org/library/meeting-minutes/.

Day 1

Day 1 of the meeting focused on the work of students from SURF student chapters at various universities.

The meeting began with Mike Rominger (meeting facilitator) welcoming participants. He discussed meeting logistics, ground rules, nonconfidentiality assumptions, export control laws, and antitrust issues. In addition, he thanked current SURF sponsors for supporting the organization. Members interested in sponsorship opportunities should contact Brandt Butler, SURF Treasurer (treasurer@sustainableremediation.org).

Tom Sale (CSU) welcomed everyone to the school and the area. He provided a brief overview of the Center for Contaminant Hydrology at CSU. The mission of the center is two-fold: (1) to develop and bring to the market cost-effective cleanup methods and (2) to educate future leaders in the field of environmental engineering. The evolution of the center has relied on a youthful group of empowered people, similar to the members of SURF's student chapters. He encouraged students participating in the meeting to feel empowered and move SURF forward.

Karin Holland (SURF President) welcomed everyone to the meeting, especially students attending the meeting as part of the student day. Part of SURF's mission statement is to advance the science of the practice of sustainable remediation, and Karin believes that students are the future leaders of sustainable remediation. She thanked Tom Sale (CSU) and the SURF student chapter members at CSU, as well as the Academic Outreach Initiative co-leaders for their help in making the student day a reality.

Day 1 presentations and subsequent discussions are summarized in the subsections below. Attachments 2 through 9 contain the presentation slides for Day 1 of the meeting.

Sustainable Remediation 101

Dave Ellis (DuPont) spent the afternoon before the meeting discussing with SURF student chapter members potential topics of interest for this presentation. Students expressed an interest in hearing more background about why remediation is performed. Consequently, Dave provided participants with an overview of the genesis of environmental regulations in the United States

and reviewed the five phases of remediation: site assessment, remedy selection, remedy design, implementation, and closure. He described the implementation phase of remediation, explaining that this phase can be relatively short and effective or long and without reducing concentrations. This range in remedy effectiveness prompted discussions about how remediation could create a net benefit to the environment as a whole and led to an initial meeting of a group that would eventually become SURF. Dave provided an example to demonstrate the benefit of minimizing the impact of remedies. At one DuPont site, a remedy involving the excavation and disposal of over 10 million tons of soil was being promoted by regulators. An in situ treatment remedy was preferred by DuPont because of worker safety and greenhouse gas emission concerns. The in situ treatment remedy is currently being reviewed by the regulatory agency.

Dave reviewed the triple bottom line of sustainable remediation (i.e., environment, society, and economy) and noted that considering these elements often changes the remedy selected. Although sustainable remediation addresses these three elements in some form, the application of these elements is not uniform. For instance, SURF Brazil weighs the societal element more heavily than environmental and economic elements when implementing sustainable remediation. Dave emphasized the different thought process involved in sustainable remediation, specifically one that involves discussion and questioning. He believes this process results in improved thinking. He provided a quantitative example on how this improved thinking can affect the bottom line. DuPont performs \$100 million in remediation each year and saves 2% to 5% of its budget by performing rigorous sustainability assessments.

Discussions focused on the following topics:

□ Emission Calculations vs. Life-Cycle Assessments (LCAs)

Dave acknowledged that many professionals calculate carbon dioxide (CO_2) emissions for different remedies and make remedy selection decisions based on these calculations. He said that LCA is commonly used and accepted in Europe where sea level rise is a concern and a more visible issues than in the U.S. He believes that the practice of LCA will become a skill-set differentiator in the remediation field. Dave said that experience with LCA is a basis for hiring remediation consulting firms at DuPont.

□ Student Involvement at Battelle

Mike Miller (Co-Chair, Academic Outreach) provided details to participants about the SURF student paper competition that will be held at Battelle in 2013. He encouraged students to write a paper and participate in the competition, emphasizing the opportunity for networking.

□ Technologies

Dave told participants that no *one* particular technology is more sustainable than another. The sustainability of a technology depends on how the technology will be applied to address site-specific considerations. One participant asked for a comparison of landfills and landfarms. Dave said that landfarms involve the biological treatment of hydrocarbons and tend to be relatively inexpensive compared to landfills. Landfarming requires sufficient area, drainage infrastructure for leachate, a means of maintaining the oxygen supply in soil, and time. Soil can be recycled after treatment.

Experiences with Regulatory Community Dave described his experiences with the regulatory community when implementing sustainable remediation as "variable, but positive." He stated that the U.S. Environmental Protection Agency (USEPA) focuses on green remediation (vs. sustainable remediation). Since the Interstate Technology & Regulatory Council (ITRC) has begun developing sustainable remediation documents, he believes that the USEPA is more likely to accept a sustainability argument.

SURF Student Chapters and Student Presentations

Kevin McCoy (CSU Student Chapter) listed the following student chapters as participating in the meeting: CSU, Syracuse University, Clarkson University, University of Illinois at Chicago, and Colorado School of Mines. He reviewed the activities of the CSU Student Chapter and encouraged other student chapters to request SURF members located near their university to serve as guest speakers or help arrange field trips to remediation sites. The following representatives from each student chapter provided a brief update of their chapter's activities:

□ Syracuse University

Zeno Levy said that his chapter has experienced an influx of new members. They are following up with SURF members about speaking at upcoming chapter meetings.

□ Clarkson University

Gerlinde Wolf said that because her chapter was recently formed, they are working on increasing membership and holding elections. A guest speaker is scheduled to present at the next chapter meeting.

- University of Illinois at Chicago
 Erin Yargicoglu said that her chapter was also recently formed and is hoping to grow its membership.
- Colorado School of Mines Martin Dangelmayr said his chapter is active and welcomes SURF members to make presentations at meetings.

Students from various universities gave presentations, which are summarized in the paragraphs below. Student presentation slides are provided in Attachments 2 through 9.

 \Box CO₂ Traps

Kevin McCoy (CSU) presented CO₂ traps as a new tool for measuring light, nonaqueous phase liquid (LNAPL) loss rates at petroleum-impacted sites. As a result of recent studies suggesting that natural LNAPL losses are significant and may rival hydraulic recovery technologies, CSU developed an integral CO₂ trap that directly measures fluxes of CO₂ at grade. The fluxes are used to calculate natural LNAPL loss rates. Kevin described the traps as conceptually similar to flux chambers without the disadvantage of pressure buildup, allowing continuous integral measurements over a period of two to four weeks. In addition, the traps provide a low-cost, minimally invasive way to calculate natural LNAPL loss rates without exposing workers to contamination. Field surveys using these traps were performed at seven sites to estimate natural LNAPL losses under a range of site conditions. Calculated LNAPL losses ranged from 921 to 13,300 gallons per acre per year. These loss rates and the measured CO₂ fluxes showed distinct spatial and seasonal variability. Presentation slides are provided in Attachment 2.

Combined Sewer Overflow Treatment Zeno Levy (State University of New York) presented his work on developing monitoring protocols and baseline data for a wetland pilot project treating combined sewer overflow in Syracuse, New York. Combined sewer overflow is a mixture of sewage and stormwater runoff that discharges into urban waterways when flow through "grey" municipal sewers exceeds capacity. By pairing different constructed treatment wetland designs in tandem, a suite of green infrastructure alternatives were engineered and can be adapted to fit a variety of urban ecological niches. The design involves three wetland modules in three interchangeable flow configurations. Zeno presented the challenges associated with developing an adaptive monitoring plan addressing the experimental design, sampling methods, and sampling targets. In addition, he discussed how the pilot project and monitoring program could be used to help institutionalize monitoring protocols and standards for green combined sewer overflow treatment. The experimental design and monitoring data will be used to recommend future wetland treatment expansion projects in the area. Presentation slides are provided in Attachment 3.

□ Biologically Enhanced DNAPL Dissolution in Fracture Zones

Peggy Altman (Colorado School of Mines) presented research associated with biologically enhanced dense, nonaqueous phase liquid (DNAPL) dissolution in fractures. Eighty percent of Superfund sites and 3,000 Department of Defense sites contain DNAPL contamination. When located in fractured geologic media, this contamination presents unique and complex challenges. Peggy reviewed how fracture aperture and aperture variability affect flow and transport and how fracture aperture heterogeneity affects DNAPL distribution and dissolution. She cited studies that showed biodegradation near DNAPL source zones and at high aqueous concentrations as well as increased dissolution enhancement where DNAPL and organisms were segregated. Her research involved using an experimental apparatus to flood fractures with tetrachloroethylene (PCE) DNAPL. Then, the system was flushed until residual concentrations were reached. DNAPL dissolution and PCE concentrations were evaluated, and a bacteria culture was introduced. Effluent concentrations of PCE and daughter products of the system were monitored over time. Preliminary results and conclusions indicate the following: (1) DNAPL dissolution in fractures is slower than in single fractures or porous media, (2) DNAPL dissolution in the presence of biological activity was enhanced by a factor of 3.5, and (3) biomass growth has the potential to change flow paths as evidenced by blocked effluent tubing. Presentation slides are provided in Attachment 4.

□ Slow-Release Permanganate Candles

Gerlinde Wolf (Clarkson University) suggested the possibility of addressing large, dilute plumes by using a combination of passive in situ chemical oxidation and slow-release permanganate candles. The candles are made of a mixture of solid potassium permanganate (KMnO₄) particles and paraffin wax that allow for the sustained delivery of oxidant into the contaminated zone. In this technique, permanganate is distributed throughout the media via diffusion and dispersion, and a reactive zone is created that can destroy contaminants. With this idea in mind, a user-friendly, open-source design tool is being developed to help achieve full-scale field implementation of this technique. The design tool will simulate the release kinetics and permanganate reaction, including the effects of potential inner candle tortuosity on the release of permanganate over time. Gerlinde reviewed the input parameters of the tool and provided preliminary modeling work of solute transport and permanganate release. This Microsoft Excel[®] based tool will require users to input known site parameters and will model permanganate release vs. time, determine the zone of influence of permanganate candles, lifespan of oxidation potential, required candle spacing and number of candles, and estimate the cost of the project. Future work involves scaling the tool from bench-scale testing to field-scale, addressing how permanganate candles will behave in low permeability media, optimizing the initial zone of influence, and incorporating permanganate natural oxidant demand into the model to estimate the time required to create a reaction zone for contaminant destruction. Presentation slides are provided in Attachment 5.

Green and Sustainable Remedy Selection and Design

Erin Yargicoglu (University of Illinois at Chicago) described the remedy selection process and recommended design at the Indian Ridge Marsh site in southeast Chicago, Illinois. The site is slated for remediation and re-development as part of the Calumet Open Space Reserve Initiative. Erin described the contaminants present at the site: heavy metals, pesticides, volatile organic compounds, and polycyclic aromatic hydrocarbons (PAHs). Remedial options for soil and groundwater treatment were evaluated for applicability, cleanup efficiency, and sustainability. The technologies considered included excavation, solidification and stabilization, in situ chemical oxidation, in situ bioremediation, and enhanced biostimulation with phytoremediation. Appropriate remedial options were subjected to a detailed evaluation using SiteWise[™] and the Sustainable Remediation Tool[™]. These analyses, combined with a qualitative evaluation of sustainability based on California's Green Remediation Evaluation Matrix (GREM), resulted in the final remedy selection of phytoremediation with enhanced biostimulation in areas containing severely degraded soil. The recommended remedial strategy also incorporates plant species present on-site and restoration of the site's native vegetation. Presentation slides are provided in Attachment 6.

D Engineered Attenuation Zone for Petroleum Hydrocarbons Mitch Olson (CSU) discussed his work on a field demonstration of an engineered attenuation zone at a former refinery site in the western U.S. The project goal was to replace the pump-and-treat system with a remedy that uses less energy and resources. The engineered attenuation zone involves removing the impacted soil and replacing it with backfill soil that is engineered to enhance natural attenuation processes. Mitch described the pilot-scale study that evaluated (1) the feasibility of the engineered attenuation zone as a remedy, (2) the characteristics of the potential backfill, and (3) the long-term effectiveness. The pilot-scale system was designed with three flumes and uncontaminated material collected from the site as backfill. The influent water contained about 500 micrograms per liter (μ g/L) of benzene and 10 to 50 μ g/L toluene, ethylbenzene, and xylene. Source water originated from an on-site monitoring well and contained about 900 milligrams per liter (mg/L) of sulfate. A peristaltic pump transmitted groundwater directly from the well to the flumes. Performance data graphs of the aerobic flume showed that the system became biologically active quickly, although potential distribution issues may exist. Anaerobic flume performance graphs indicated that the system became active after six months, with near-complete removal of benzene, toluene, ethylbenezene, and xylene in the 2- to 4-foot soil interval. Mitch discussed the system upsets that occurred in both flumes during the winter months. Based on the field demonstration results, the engineered attenuation zone may provide a viable alternative to the current pump-and-treat system. Ongoing activities focus on economics, feasibility,

and the sustainability of full-scale implementation. Presentation slides are provided in Attachment 7.

□ Anaerobic Membrane Bioreactor Optimization

Dustin Whynman (Clarkson University) presented his work evaluating the potential of an anaerobic membrane bioreactor system to treat municipal and food wastes in decentralized communities such as operating bases (e.g., Afghanistan) and remote industrial locations (e.g., mining operations). Dustin provided an overview of the experimental design, which included a ceramic membrane, full automation, and backpulsing at high pressure for membrane cleaning. Fouling indices were calculated to compare fouling under different operating parameters, and experiments were performed with different waste streams to determine the best operating parameters. Biogas production was measured, and biogas was analyzed for composition to determine the efficiency of methane production. The reactor digestate and the membrane permeate water quality were evaluated to determine treatment efficiency (i.e., chemical oxygen demand, total organic carbon, total nitrogen, and turbidity). Preliminary results showed chemical oxygen demand removal greater than 90%, and low irreversible fouling indices proved that backpulsing is an effective way to mitigate fouling while working with highstrength waste streams. Dustin emphasized the importance of monitoring and adjusting the pH and alkalinity to maintain efficient digester operation. Presentation slides are provided in Attachment 8.

□ Hydrocarbon Sheens: Governing Processes and Innovative Solutions

Alison Hawkins (CSU) described four experiments designed to better understand the processes associated with hydrocarbon sheens and, through this understanding, advance innovative solutions for preventing hydrocarbon migration. These experiments focused on testing the following two hypotheses: (1) fully saturated capillary barriers preclude LNAPL migration as an intermediate wetting phase and (2) organoclay barriers are oleophilic systems that preclude LNAPL migration by sorption. (Capillary barriers in these experiments were defined as materials with a capillary rise that was higher than the adjacent formation.) A laboratory-scale tank was filled with medium silica sand, diesel was added to the tank at a flow rate of 6 mL/hour, and water levels were cycled through two high and two low levels each day. Alison showed participants videos of the experiments being conducted.

- Experiments Testing Hypothesis 1

The first experiment included a 4 centimeter thick vertical fine sand wall at the distal end of the tank. As seen in the video, the capillary barrier prevented migration of the diesel. In the second experiment, the above steps were repeated with the addition of two wells for hydraulic LNAPL recovery. As shown in the video, a large amount of diesel was recovered, prolonging the longevity of the barrier.

- Experiments Testing Hypothesis 2

The third experiment was identical to the first except that the barrier consisted of an organoclay and sand mix in a one to three ratio. Slow drainage, preferential flow paths, and low bulk sorption were observed. The fourth experiment improved upon the third experiment and included two organoclay barriers. Three impermeable baffles were added to the first barrier to prevent overtopping, and drainage lines were added to the second barrier to prevent preferential flow. As seen in the video, the average saturation of the organoclay barrier increased with the improvements.

Further research is being conducted to improve both types of remedies, and supporting field work is scheduled in New York and British Columbia, Canada. Presentation slides are provided in Attachment 9.

Student Chapter Panel Discussion

Mike Miller (CDM Smith) moderated a panel discussion with the following students from SURF student chapters:

- □ Martin Dangelmayr (Colorado School of Mines)
- □ Zeno Levy (Syracuse University)
- □ Kevin McCoy (Colorado State University)
- □ Gerlinde Wolf (Clarkson University)
- □ Erin Yargicoglu (University of Illinois at Chicago)

Mike stated the ground rules and asked the panelists to comment on the two topics listed below. A summary of panelists' responses is also provided below.

□ Reflect on Sustainability in Your Career

Zeno said that his career as a wetlands scientist and environmental chemist reflects the interdisciplinary aspect of sustainability and promotes interdisciplinary solutions, similar to sustainable remediation. Kevin emphasized the importance of the social element of sustainability, such as job creation. Erin believes the concept of sustainability has shifted. In the 1990s, pump-and-treat systems were commonplace. Now, the idea of designing and implementing a pump-and-treat system seems inconsistent with long-term goals. Remediation practitioners are looking at problems differently (i.e., longer term) and considering future consequences. Gerlinde said sustainable solutions often "just make more sense." She acknowledged that sustainable remediation involves more work at the beginning of a project, but believes it pays off. She cited Dave Ellis' presentation in which he said DuPont saves 2% to 5% of its remediation budget by performing rigorous sustainability assessments. Martin agreed with the comments expressed by Erin and Gerlinde.

□ Speculate about the Future of Sustainable Remediation

Zeno believes that the definition of "sustainability" is broad and general and that it has become a buzzword. SURF examples of sustainable remediation are specific, which is what is needed. Zeno recommended reclaiming the word "sustainability" by providing concrete case studies, metrics, and philosophies. Kevin said that sustainable remediation is a combination of not only cutting-edge technology and forward thinking, but also common sense. He would like to see the thought process of sustainable remediation applied to areas outside of the environmental arena. Gerlinde said that technology advances have been growing exponentially. With this growth, she believes that sustainable remediation will become the norm. Erin said that the success of sustainable remediation hinges on society. Although tools exist to assess sustainability, a broader discussion or a global effort needs to occur.

One participant asked panelists for their thoughts about whether university curricula is changing based on the interest in sustainability in general. Gerlinde said Clarkson University offers a class focused on LCA and engineering for sustainable design. Erin said that similar changes are happening at University of Illinois at Chicago; the remediation engineering class now incorporates sustainability metrics. Because of these changes, Erin believes that more people will be introduced to the concepts of sustainable remediation and progress will result. Zeno believes that the fundamental divide between physical and social sciences is a significant barrier to integrating sustainable remediation into university curricula. He said that multidisciplinary remediation projects (like those highlighted at SURF meetings) outnumber the projects and collaboration between these departments in academia.

Another participant asked the panelists for their ideas on how to bring research into current sustainable remediation projects. Following up on his last comment, Zeno said that research funding could catalyze collaboration between academic departments that do not usually work together. Erin said that her poster on biochar material (i.e., recycled activated carbon) is a good example of research efforts being integrated into sustainable remediation solutions. Kevin said that the CO_2 trap technology he presented resulted in long-term data that could support more sustainable ways to address sites contaminated with NAPL. Gerlinde said that a few professors at Clarkson University have shifted away from laboratory-oriented work to computer modeling work when possible to conserve resources and materials.

Day 2: The Resurgence of Oil and Gas Development

Hank Gardner (CSU) welcomed participants to the second day of the meeting and CSU. He said that 2012 marks the 150th anniversary of the passage of the Morrill Act, otherwise known as the Land-Grant Act. CSU is a Land-Grant university that provides skill sets of service, education, and research. Hank said that CSU is trying to broaden and deepen its interdisciplinary approach to problems and mentioned water research as an example. Water is a critical resource and, as such, water research needs to consider other spheres that it touches (e.g., economic, sociology, agriculture). Similar to other Land-Grant universities, CSU has a presence throughout the state through its extension network. Using this network, the university is able to reach out and provide a bridge between research and real-world applications.

A portion of Day 2 of the meeting was divided into three sessions. The first two sessions addressed two settings (i.e., subsurface air and air/water) and the associated implications for sustainable remediation. The third session addressed the policy implications of sustainable remediation. The presentations and subsequent discussions for each session are briefly summarized below. Attachments 10 through 14 contain the presentation slides for this portion of Day 2.

Implications for Sustainable Remediation: Subsurface Setting

The following topics were addressed during Session 1:

□ Comments on Relevance to SURF

Tom Sale (CSU) discussed his evolving perspective of SURF and the relevance of oil and gas development (including hydraulic fracturing) to SURF. Energy, water, and the

environment are all linked; they are inseparable, with huge impacts on one another. Similarly, hydraulic fracturing affects groundwater, surface water, air, and land. Because prevention is part of sustainability, it is necessary to be proactive and eliminate impacts *before* they exist. Tom explained that the goal of these three sessions is to inform participants about the hydraulic fracturing process and collectively brainstorm about how hydraulic fracturing can be conducted more sustainably. He emphasized the following rewards for being proactive in solving the challenges associated with hydraulic fracturing: high paying jobs, affordable fuels, improved trade balances, tax revenue for communities, energy security, natural gas as a bridge enabling renewable energy, and new technology that can be exported. Presentation slides are provided in Attachment 10.

□ Brief Introduction to the Geology of Natural Gas and Oil

Sally Sutton (CSU) presented a brief introduction to the geology associated with natural gas and oil. As background, she explained that natural gas and oil form in rocks when heat changes buried organic matter. Specifically, dead organisms trapped in seafloor mud partially transform to kerogen, which has a complex and poorly organized molecular structure. As the sediment is more deeply buried, the kerogen "matures" to generate gas and oil.

Sally explained conventional gas and oil production where shales serve as flow barriers to keep natural gas and oil accumulations in place. To form conventional deposits, natural gas and oil migrate through connected pores and fractures and then accumulate in coarse-grained rocks with large pores. Some natural gas and oil is left behind as unconventional deposits in the low-permeability source rocks. Microscopic views of fine-grained rocks hosting unconventional deposits reveal heterogeneous rocks that vary in composition, organic matter content, and susceptibility to natural fracture and show that the organic matter maturation process that generates the gas can also create some porosity to hold the gas. Hydraulic fracturing causes additional fracturing in these areas and props the fractures open to achieve economic production. Presentation slides are provided in Attachment 11.

Discussions focused on the potential geological effects from the "violence" of the fracturing, gas recovery rates in the formation, and gas hydrates.

- Sally mentioned that the fracturing releases the gas and makes the shale more permeable. Other results depend on the composition of the shale. For example, shales with horizontal laminations can be opened during hydraulic fracturing but the process requires lifting the column of overlying rock, which can cause unwanted vertical rock propagation.
- Sally said that knowledge continues to evolve about the production rates of hydraulic fracturing wells. Although decline curves are used to predict production for conventional oil and gas wells, the curves are not well understood for unconventional wells. Therefore, they are not as effective in predicting the long-term production of hydraulically fractured horizontal wells.
- Sally explained gas hydrates as methane hydrates (i.e., a marriage between water and methane molecules) found in marine sediment settings at shallow to moderate depth. Gas hydrates contain a significant amount of methane on the sea floor and

are common in the Gulf of Mexico where they can complicate drilling. Although gas hydrates can be a potential significant future resource, they are also a potential significant environmental problem because they likely cannot be extracted without the liberation of methane.

D Environmental Implications of Drilling and Completion

Tom Sale (CSU) presented the step-by-step process of drilling and completing oil and gas wells as well as an overview of hydraulic fracturing and its environmental implications. Tom provided an overview of the historical process of drilling to emphasize advances that have led to safer and more efficient practices. He reviewed the steps in completing a well: drill hole and set conductor casing; set plugs, cement, and displacing fluid; displace into annular space; and set surface, intermediate, and production casing and cement. Tom cited American Petroleum Institute guidelines and specifications used by California for horizontal drilling to demonstrate the methods used to protect groundwater. He showed how little pressure is needed to create a fracture and how hydrostatic pressures and the slurry flow rate are tracked via computer. Tom described Wells Ranch in Eastern Colorado, which has one production well, eight horizontal wells undergoing hydraulic fracturing, and eight wells producing flow back. At this site, UV oxidation is being used to heat the water and kill bacteria. During his closing thoughts, Tom listed the concerns associated with horizontal drilling, including long-term impacts to groundwater such as surface releases of hydraulic fracturing fluids, flow along historical and new penetrations, losses of fracturing fluids during handling and disposal, and water needs. Presentation slides are provided in Attachment 12.

Participants' questions and Tom's comments are summarized below.

- Tom commented on speculation that the reinjection of water may cause seismic activity. He cited a National Research Council report (*Induced Seismicity Potential in Energy Technologies*) that stated hydraulic fracturing would not cause earthquakes. The report is available at http://www.nap.edu/catalog.php?record_id=13355.
- Participants asked about the carbon footprint of the hydraulic fracturing process. Tom said that all forms of energy production would need to be contemplated and the relative merits compared. One participant reminded the group that LCAs do not focus solely on carbon footprint; impacts such as water scarcity are also considered.
- During his presentation, Tom mentioned that, according to the Colorado Oil and Gas Producers, 1% of all Colorado water was associated with hydraulic fracturing.
- Because of the competition for water, one participant asked if other substances are being used for hydraulic fracturing. A participant from the oil and gas industry responded that other substances (e.g., propane) are being assessed, but safety remains a concern.
- One participant asked about the triple bottom line implications of hydraulic fracturing, specifically social issues, and the associated metrics being used. A participant from the oil and gas industry responded that his company is evaluating

the energy, water, and food nexus. He said that trucking water to the site results in one of the largest carbon footprints associated with hydraulic fracturing, so his company is developing a 20-mile pipeline route to feed the water to sites. In addition, his company is assessing methods to monitor potential effects in deep groundwater to prevent issues such as methane gas release and brine contamination.

Implications for Sustainable Remediation: Air and Water Setting

The following topics were addressed during Session 2:

□ Air Pollutant Emissions from Shale Gas Development and Production Allen Robinson (CSU) presented an overview of the air pollution associated with producing shale gas. Allen categorized well development (e.g., drill rigs, truck traffic) and gas production (e.g., fugitives, condensate tanks) parameters as major and minor sources of criteria pollutants, hazardous pollutants, and air toxics. He identified two data gaps that need to be addressed from an air quality perspective. The first deals with the variety of spatial scales associated with shale gas development. Because the spatial extent of development encompasses large geographic areas, the impacts of aggregate emissions on regional pollutant levels are needed. In addition, limited ambient data exist and there is poor spatial correlation between air monitoring networks and oil and gas development and production. Allen described a site in Garfield County, Colorado, in which air toxic emissions created local impacts. He ended his presentation by presenting his work mapping methane in the Marcellus region. Although climate implications are uncertain, methane levels in gas fields are elevated. Presentation slides are provided in Attachment 13.

Discussions focused on potential tracer compounds. Allen said that fugitive gas emissions can serve as tracers.

□ Managing Air Emissions from the Natural Gas Industry

In an effort to help expand the discussion, Morgan DeFoort (CSU) focused on the mathematical and chemical advantages of using methane vs. coal from a pure energy conversion standpoint. Although methane has CO₂ impacts, he commented on the variability of coal and the ability of natural gas to fill this gap. Morgan presented the top 10 advantages and disadvantages of natural gas, stressing the need for using natural gas thoughtfully to avoid the disadvantages. He emphasized the complexity of the natural gas industry and presented a few of CSU's technologies designed to help meet National Emission Standards for Hazardous Air Pollutant (NESHAP): catalyst testing, syngas development, laser ignition, natural gas kinetics, and infrastructure monitoring. Presentation slides are provided in Attachment 14.

No discussions occurred after the presentation.

Implications for Sustainable Remediation: Policy

Bill Ritter (Leader of CSU's Center for New Energy Economy) spoke during Session 3. He described his experiences with hydraulic fracturing as a former Colorado governor collaborating with industry, finding common ground among stakeholders, and developing rules and regulations that have become the national standard. Spurred by a factor of six increase in permitting

requests for hydraulic fracturing in Colorado and believing that natural gas could be part of a clean energy economy, he focused on regulations to ensure the protection of human health and the environment. At the time, companies were not required to disclose information regarding hydraulic fracturing fluid. First, the makeup of the Oil and Gas Conservation Commission was reformed by reducing the amount of industry members and adding individuals from local government. The new commission identified the issues that needed to be addressed and began developing rules for hydraulic fracturing. The former governor said that, in some ways, the rules were written based on industry practice at the time. Companies are now required to fully disclose information about hydraulic fracturing fluid (with the exception of trade secrets). The former governor said the rules developed for Colorado are precedent setting; some of Pennsylvania's hydraulic fracturing rules and much of Ohio's drilling laws are modeled after those in Colorado. The former governor continues to educate state representatives (most recently in California) about the science associated with drilling and hydraulic fracturing. He acknowledged the work left to do and said that understanding the consequences of hydraulic fracturing can reveal tradeoffs. For example, in the western U.S., the tradeoff between energy production and food production exists. To achieve less of a tradeoff as far as food production, he recommended evaluating recycling and recovery options. He also mentioned social licenses to operate in which industry must make a case that the quality of life of the surrounding communities is not impacted. The goal of the license is to recognize that a community is impacted when hydraulic fracturing is conducted in its proximity and to include community concerns in the comprehensive drilling plan.

One participant asked about how to communicate the technical information associated with hydraulic fracturing effectively so that misperceptions can be eliminated. The participant suggested that communities were suffering from a "not in my backyard" (NIMBY) reaction to hydraulic fracturing. The former governor disagreed, citing newspaper reports all over the U.S. about real issues (e.g., methane) associated with the practice. He challenged industry to acknowledge the problems associated with the practice and develop engineering solutions. Then, the virtues of natural gas can be communicated because issues such as methane have been addressed. In response to another participants' skepticism that education would solve these issues, the former governor said that it is necessary for state representatives to maintain pressure on the environmental community and industry to rely on science.

The former governor was asked to comment on how to keep up with new developments in terms of hydraulic fracturing regulations and to share his litigation experiences. He said that the Joint Institute of Strategic Energy Analysis in Golden, Colorado, is identifying and evaluating industry best practices. He said there is very little litigation on this issue at the current time, but the history of environmental protection has shown that litigation plays a big role.

One participant asked about the current state of remediation surrounding gas extraction sites. A participant from an oil and gas company answered the question, saying that historical oil operations involved unlined pits. These unlined pits became a significant source of brine contamination. Now the pits are lined to prevent contamination. Surface operation impacts are being minimized as well; water treatment technologies are being evaluated and brine water and injection fluids are handled in an environmentally responsible manner.

The final question came from a participant who asked whether any state has a requirement for groundwater or gas formation. The former governor said that Ohio rules address these issues and commented that baseline testing and ongoing monitoring have improved.

Day 2: Hydraulic Fracturing and Remediation Discussion

After Sessions 1 through 3, participants had an impromptu discussion about hydraulic fracturing and remediation. Participants mentioned their opinions on a variety of topics; their recommendations are listed below.

- □ Involve stakeholders first, lay out the issues, and support with facts.
- Recall the presentations made at previous SURF meetings that address the social aspects of sustainable remediation and the education of stakeholders.
- □ Have public policy makers, economists, and social scientists "crunch the numbers" to determine the tradeoff of methane in wells for U.S. energy independence.
- \Box Work on prevention as much as we do remediation.
- □ Consider using brine as a tracer.

Day 2: Updates of Natural Gas Application and ITRC Activities

At the end of Day 2, participants heard two presentations from SURF members. The presentations and subsequent discussions for each presentation are briefly summarized below. Attachments 15 and 16 contain the presentation slides.

Use of Natural Gas in Thermal Remediation

Grant Geckeler (TPS TECH) presented the evolution of the use of natural gas in thermal treatment. He began by reminding participants of the mechanics of off-site thermal desorption, which involves significant infrastructure to create heat gradients to desorb contaminants from soil. This initial concept was adapted and now three different thermal remediation techniques using natural gas are available. Two of these techniques can be used for in situ treatment; all can be used ex situ. The first technique is designed for ex situ use only and involves treatment via natural gas burners and a thermal oxidizer. The other techniques have an in situ mechanism that allows remediation practitioners to forego excavation. The heat from natural gas or propane is transversed through a closed-loop coaxial heater well. Heat is transferred to the impacted soil and groundwater through conduction. Grant told participants that issues related to sustainable remediation have driven these technological advances. He showed a graph comparing coal and natural power and emphasized the need to perform a comprehensive LCA to explore sustainability issues further. Grant discussed international projects with accelerated timeframes that do not allow for a comprehensive LCA. Instead, internal models are relied upon for baseline sustainability numbers. He ended his presentation with an international case study involving an abbreviated sustainability assessment for remediation of PAH-impacted soil. The assessment focused on societal implications of land reuse and demonstrated that sustainability elements can be integrated at any point in the project. In one project, the heater wells were reused for geothermal heating of an apartment building. Presentation slides are provided in Attachment 15.

No discussions occurred after the presentation.

ITRC Green and Sustainable Remediation

Stephanie Fiorenza (BP) provided an update of the green and sustainable remediation (GSR) efforts of the ITRC. Stephanie presented the background of the ITRC GSR team, which was

formed in 2008 and is led by state regulators Tom O'Neill (New Jersey) and Rebecca Bourdon (Minnesota). Since its inception, the team has published an overview document and a technical and regulatory guidance document. Currently the team is providing internet-based training for these documents. Stephanie reviewed the training sections, including ITRC's definition of green and sustainable remediation and the flexible and scalable framework developed. The training also addresses the implementation of GSR and provides a methodology for identifying options, evaluating them, implementing the most appropriate, and tracking and documenting along the way. The training also emphasizes the need to set GSR goals, select metrics, include stakeholders, and set the boundaries of the evaluation *before* selecting a GSR tool. Case studies are also included in the training. Additional information about the ITRC GSR team is available at http://www.itrcweb.org/teampublic_GSR.asp. Presentation slides are provided in Attachment 16.

No discussions occurred after the presentation.

Day 3

Day 3 presentations and subsequent discussions are summarized in the subsections below. Attachments 17 through 21 contain the presentation slides for Day 3 of the meeting.

Committee and Initiative Breakout Sessions

SURF members continue to work on efforts that will further the mission of the organization. At this meeting, breakout sessions were held for the following technical initiatives: Sustainable Remediation Resource Index, Sustainable Remediation Rating and Certifications, Groundwater Reuse and Conservation, and Government Outreach. Presentation slides are provided in Attachment 17. SURF members can access the latest work and activities of these groups by visiting the "collaboration area" under the "member resources" menu on the SURF website. Members interested in joining an initiative or committee should contact the group's leader. Leaders are listed on the "2012 Committee and Initiative Chart" in the "collaboration area" of the website.

□ Sustainable Remediation Resource Index (SRRI)

Diana Hasegan (Langan Engineering) provided information about this technical initiative, which replaces the previously proposed initiatives "Sustainable Remediation Site Database" or formerly the "Site of Sites" initiative. The purpose of this initiative is to create a one-stop shop of publicly available sustainable remediation tools and resources on the SURF web site. The SRRI will have four primary components: (1) one to two Microsoft Excel[®] spreadsheets summarizing sustainable remediation online tools and resources with hyperlinks included, (2) a SRRI index card template containing standard criteria and metrics for evaluating the tools and resources, (3) a detailed summary of each sustainable remediation resource in the template format (one to two pages), and (4) a white paper. Help is needed from SURF members and students to obtain links to sustainable remediation tools and resources as well as completing the one- to two-page template for each resource. Prior to SURF 21 in December 2012, five to 20 sustainable remediation resources will be reviewed and SRRI index cards will be completed and uploaded to the SURF website. Presentation slides are provided in Attachment 17.

- □ Sustainable Remediation Rating and Certifications
 - Diana Hasegan (Langan Engineering) presented an update on this technical initiative, which is aimed at determining if an adequate business case exists for developing and applying a site rating and professional certification system for sustainable remediation. Ongoing activities include the following: (1) a survey distributed to SURF members, with results summarized and reported; (2) a summary of sustainable rating tools; (3) a summary of sustainable rating organizations; (4) a report compiling survey results, tools, and organizations, and (5) a comparison of tools through "test drives." Presentation slides are provided in Attachment 17.
- Groundwater Reuse and Conservation

Patrick Keddington (Haley & Aldrich) provided an update of this new technical initiative. The team held a kickoff meeting in May 2012 and met for the first time face-to-face at this meeting. A draft outline of a perspective paper about groundwater reuse and conservation has been developed, and case studies are being compiled. The team organized into several committees to complete action items to achieve their goal of submitting a paper to the SURF Board of Trustees for review by the first quarter 2013.

Government Outreach

Buddy Bealer (Shell Oil Products) said that the members of this initiative are attempting to build a coalition of organizations with the common goal of sustainable remediation. By coordinating efforts and leveraging synergies, he believes that SURF and other organizations can use each other's strengths to achieve the goal. A by-product of the initiative will be the engagement of state regulators. Immediate action items are as follows: (1) identify and contact organizations that may be interested in joining the coalition, (2) develop materials for standard coalition presentations, and (3) develop a strategy to promote sustainable remediation with states by prioritizing states based on the number of applicable projects or interest to adopting sustainable remediation principles.

SURF members also updated participants about the following activities:

□ Academic Outreach

This committee did not meet during the breakout session, but Mike Miller (CDM Smith) provided an update of their efforts. He encouraged students to get involved in the committee and in the various SURF technical initiatives. Mike highlighted the SURF Student Paper Competition that will be held at Battelle in 2012. A flyer is available on the SURF website at http://www.sustainableremediation.org/student-paper-competition. SURF members should feel free to add academic contacts to this listing so that SURF can leverage these contacts for various activities (e.g., meeting planning and presentations, student chapter interest). The group continues to work on a list of hot research topics and a value proposition for academics. Presentation slides are provided in Attachment 17.

□ Potential Research Initiative

Stewart Abrams (Langan Engineering) discussed a potential initiative that would identify, prioritize, support, and fund potential research in the field of sustainable remediation. Participants seemed to agree that this effort would dovetail nicely into the efforts already underway by the Academic Outreach team. Presentation slides are provided in Attachment 17.

Soil and Groundwater Environmental Protection in Taiwan

Shih-Cheng Pan (Sinotech Environmental Technology) provided an overview of Taiwan's introduction to environmental contamination, associated regulations to ensure environmental compliance, listed contaminated sites and applied remediation technologies, and an ongoing case study demonstrating the current approach to green and sustainable remediation. In 1994, the RCA factory in Taoyuan County became the first publicly known groundwater contamination site in Taiwan. The Soil and Groundwater Pollution Remediation Act was promulgated in 2000 to detail measures for prevention, investigation and assessment, and remediation and restoration as well as outline financing and responsibility and penal provisions. Shih-Cheng reviewed the categories of listed contaminated sites (815 total) and the remediation technologies used for cleanup. He said that green and/or sustainable remediation is needed in Taiwan for economic, social, and environmental reasons (see below).

- □ Economic: The Remediation Fund is far from sufficient to clean up contaminated sites where the responsible parties cannot be identified or have vanished.
- □ Social: Land revitalization is needed for the contaminated rice paddies and abandoned former factories.
- □ Environmental: More efficient and smarter use of resources is needed for remediation to achieve a reduced environmental or ecological impact and smaller footprint.

The first project dedicated to green and/or sustainable remediation was initiated by the Taiwan EPA in March 2012. The scope involves collecting green and sustainable remediation information from the United States and European countries, setting up a preliminary toolbox for green and sustainable remediation, holding conferences dedicated to the topic (including one international conference), and developing case studies. Shih-Cheng presented an ongoing case study of a 42-acre site contaminated with mercury, dioxin, and pentachlorophenol. Although many technologies (e.g., thermal destruction, soil washing, bioremediation) have been tested in the last five years, a phytoremediation laboratory study proved effective in partially degrading dioxin. A pilot-scale study is being planned. Presentation slides are provided in Attachment 18.

Discussions focused on the willingness of the Taiwan EPA to accept the approach of green and sustainable remediation. Shih-Cheng said that the U.S. EPA provided documents to the Taiwan EPA about green remediation. There is confusion (vs. opposition) about the approach. Shih-Cheng said that he will bring the information he has heard during this SURF meeting back to the Taiwan EPA to help clarify issues.

Reflections of Student Day

Near the end of Day 3, students and professionals were asked for their reflections about the first day of the meeting. Day 1 of the meeting focused on the work of students from SURF student chapters. A list of reflections and feedback provided by participants is provided in Attachment 19.

Business Items

Karin Holland (SURF President) discussed the following business items with participants:

Potential Partnering Organizations
 Based on a recent SURF survey, participants listed organizations that would be good

potential partners with SURF to advance the field of sustainable remediation. Karin asked SURF members with connections at the organizations (see Attachment 20) to volunteer as liaisons to help SURF work more seamlessly with other organizations. Other SURF members wishing to volunteer as a liaison with a potential partnering organization should contact Karin (see Attachment 1 for contact information).

□ 2012 Technical Initiative Themes

Karin asked participants to provide additional themes than the three listed in Attachment 20 that they believe are important for SURF to work on in the short or long term. One participant suggested the topic of sediments.

□ Communication Between Meetings

Participants were asked for their ideas on how to keep members informed of the activities of the Board and various technical initiatives in between SURF meetings. After much discussion, most participants seemed to agree that quarterly status conference calls would be appropriate. Others seemed to like the idea of having regional meetings combined with a social element as a way to address potential budgetary issues associated with travel.

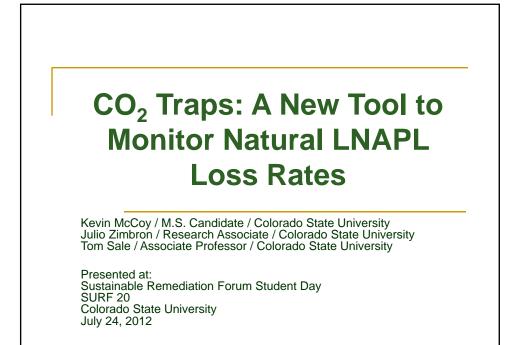
Presentation slides are provided in Attachment 20.

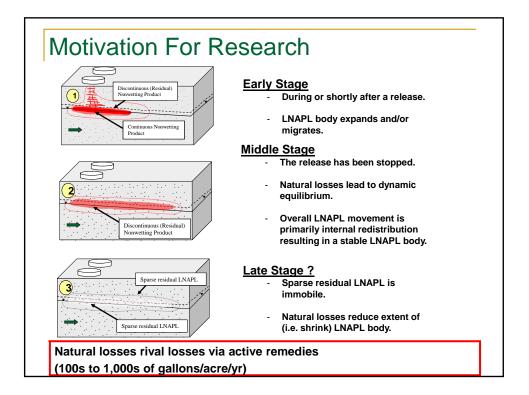
Future Meetings

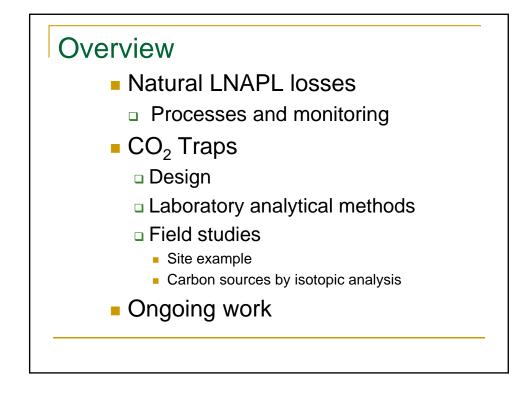
The next SURF meeting (SURF 21) will be held December 12-13, 2012, at the National Academy of Science in Washington, DC. Information regarding the details of the meetings is posted on the SURF website. If you are a SURF member and would like to help plan or host an upcoming meeting, e-mail Mike Rominger (meeting facilitator) at mike.rominger@sustainableremediation.org.

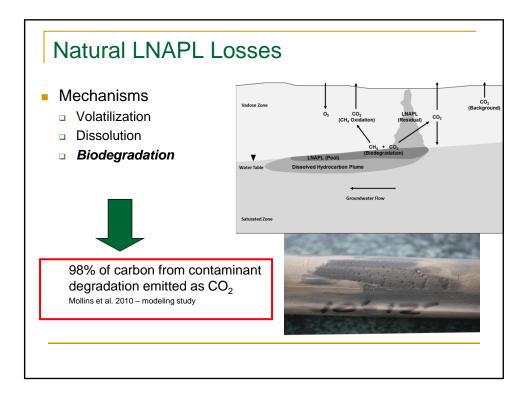
ATTACHMENTS

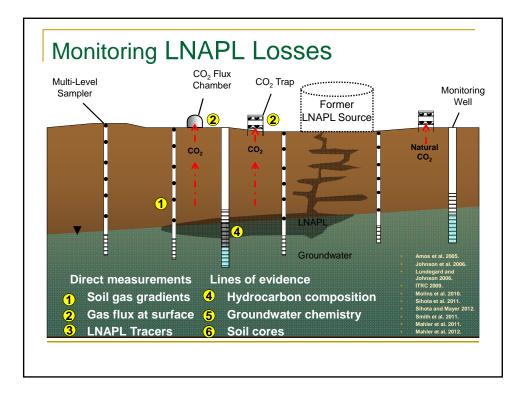
Attachment 1 SURF 20 Participant Contact Information

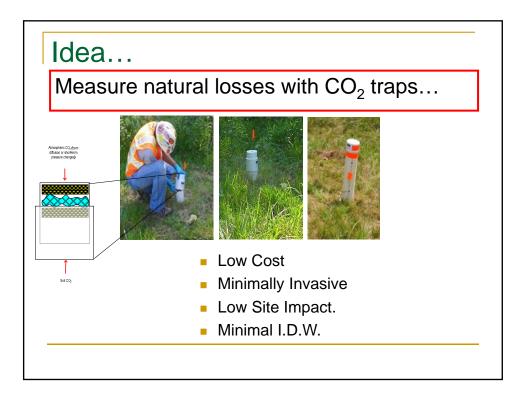

SURF 20 Participant Contact Information

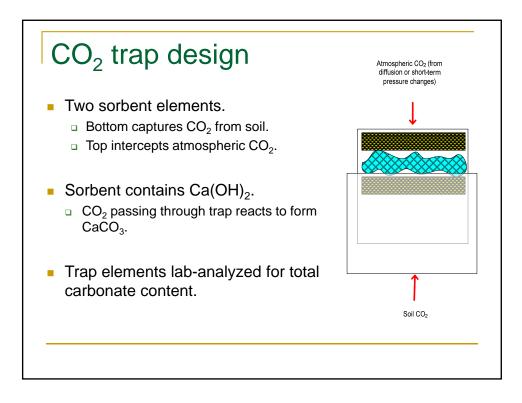

Participant	Affiliation	
Abrams, Stewart	Langan Engineering and Environmental Services	
Adams, Kathy	Writing Unlimited	
Akhbari, Daria	Colorado State University	
Altman, Peggy	Colorado School of Mines	
Ampil, Rosemarie	Parsons Corporation	
Aragona, Keith	Haley & Aldrich	
Bealer, Buddy	Shell	
Britt, Randy	Parsons Corporation	
Byrne, Adam	Colorado State University	
Chen, Su-Chen	Sinotech Environmental Technology	
Dangelmayr, Martin	Colorado School of Mines	
Daugherty, Ellen	Colorado State University	
Davis, Jennifer	Colorado State University	
DeFoort, Morgan	Colorado State University	
Dugan, Pamela	Carus Corporation	
Ellis, Dave	DuPont	
Favara, Paul	CH2M HILL	
Fiorenza, Stephanie	BP	
Fisher, Angela*	GE Global Research	
Frasco, Kelly	Carus Corporation	
Gardner, Hank	Colorado State University	
Geckeler, Grant	TPS TECH	
Goodwin, Stephen	Colorado State University	
Hadley, Paul	California Dept. of Toxic Substances Control	
Hasegan, Diana	Langan Engineering and Environmental Services	
Hawkins, Alison	Colorado State University	
Hawley, Elisabeth	ARCADIS	
Holland, Karin	Haley & Aldrich	
Irianni Renno, Maria	Colorado State University	
Jasmann, Jeramy	Colorado State University	
Jones, Michael	High Prairie Environmental	
Kean, Mary*	Sustainable Silicon Valley	
Keddington, Patrick	Haley & Aldrich	
Kluger, Mark	Dajak	
Koberle, Melissa	CDM Smith	
Krajewski, Dustin	AECOM	
Levy, Zeno	State University of New York	
Lowe, Kathryn	Colorado School of Mines	
Mancini, Kristin	ARCADIS	
McClenney, William	ENVIRON	
McCoy, Kevin	Colorado State University	
Miller, Mike	CDM Smith	
Moubarak, Jasmeen	Colorado State University	
Moxley, Katie	The Boeing Company	
Olson, Mitchell	Colorado State University	

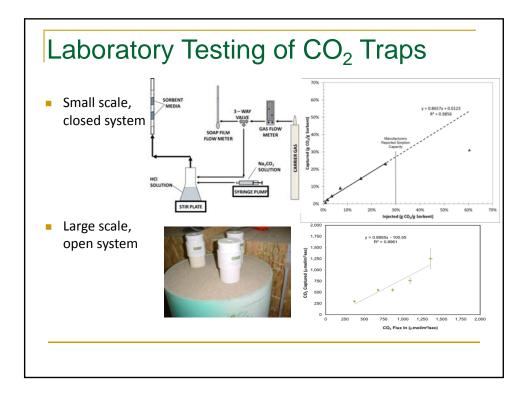

SURF 20 Participant Contact Information

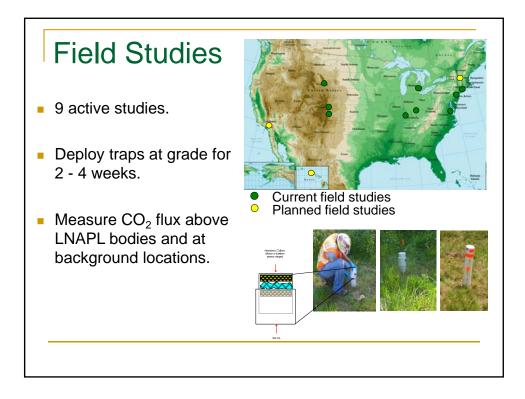

Participant	Affiliation	
Pan, Shih-Cheng	Sinotech Environmental Technology	
Petri, Benjamin	Colorado School of MInes	
Philip, Heather	Parsons Corporation	
Plampin, Mike	Colorado School of Mines	
Raymond, Dick	Terra Systems	
Rehder, Tim	EPA Region 8	
Ritter, Bill	Colorado State University	
Robinson, Allen	Colorado State University	
Rominger, Mike	MCR Facilitation Services	
Sadowski, Paul	Shaw Environmental	
Sale, Tom	Colorado State University	
Shannon, Todd	Colorado School of Mines	
Shea, David	Sanborn, Head & Associates	
Shogbon, Alicia	Colorado State University	
Skinner, Anna	Colorado State University	
Stanley, Curt	Shell Global Solutions	
Stewart, Vincent	Sentinel Consulting Services	
Sutton, Sally	Colorado State University	
Taylor, Elysia	Clarkson University	
Tunks, John	CH2M HILL	
Wahlberg, Jennifer	Colorado State University	
Wandor, David	Dow Chemical	
Watts, Dan	Arasoc Group	
Whynman, Dustin	Clarkson University	
Williams, Theodore	Syracuse University	
Wolf, Gerlinde	Clarkson University	
Woodward, Dave	AECOM	
Wunsch, Assaf	Colorado School of Mines	
Yamini Sadasivam, Bala	University of Illinois at Chicago	
Yargicoglu, Erin	University of Illinois at Chicago	

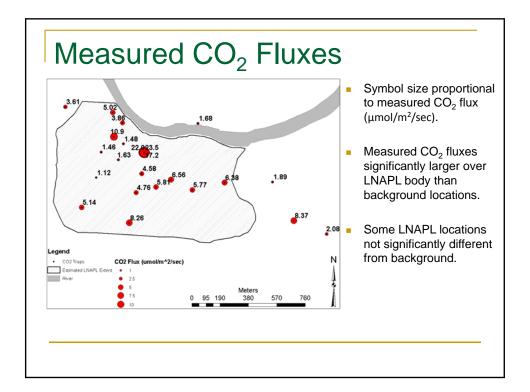

Attachment 2 CO₂ Traps

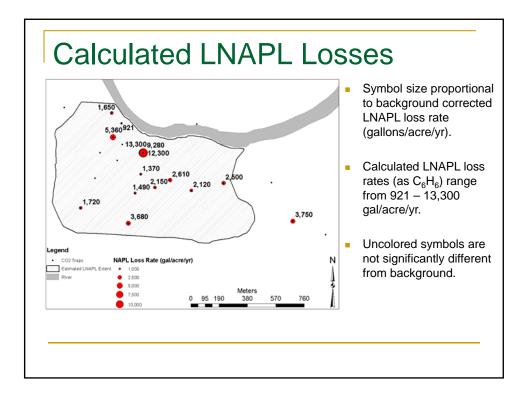


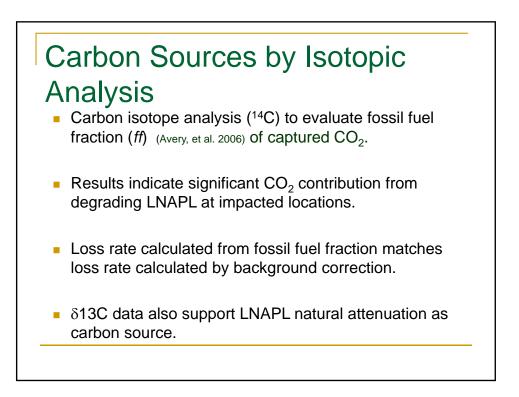


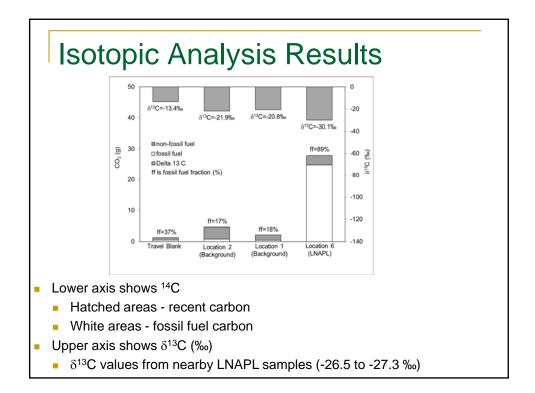


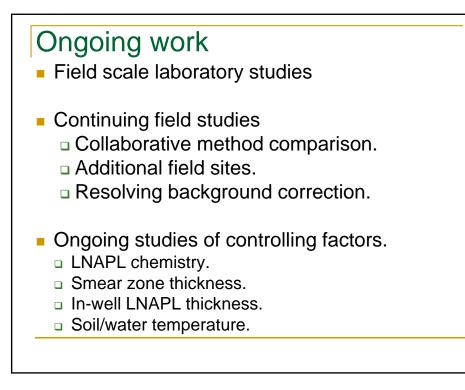


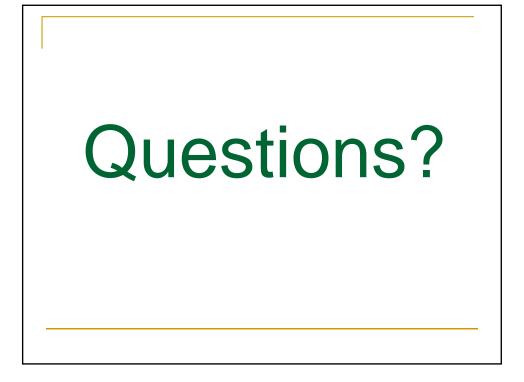








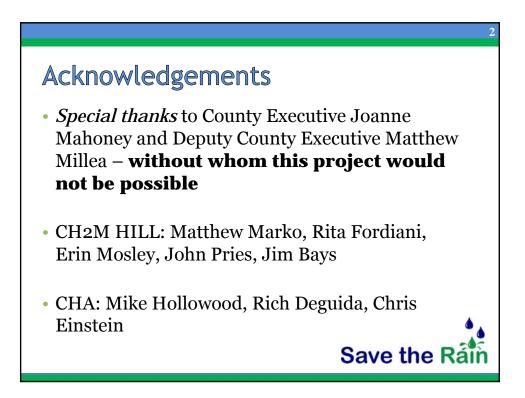


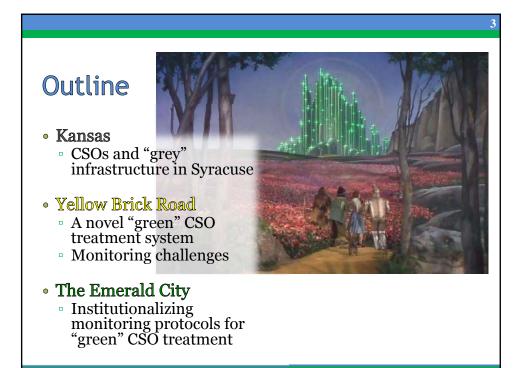


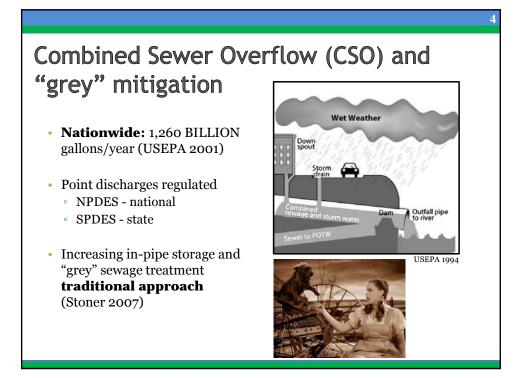
Comparison of Isotopic Correction to Background Correction

Sample	¹⁴ C Corrected equivalent LNAPL loss rate (gal/acre/yr)	Background Corrected LNAPL Loss Rate (gal/acre/yr)
Travel Blank	228	NA
BG01	377	NA
BG02	190	NA
LNAPL	12,300	12,300

Attachment 3 Combined Sewer Overflow Treatment Developing Monitoring Protocols and Baseline Data for Assessment of a Novel, Full-scale CSO Treatment Wetland Pilot Project in Syracuse, NY


Zeno Levy¹ and Richard Smardon¹


¹State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210


> SURF 20 July 24th 2012 Fort Collins, CO

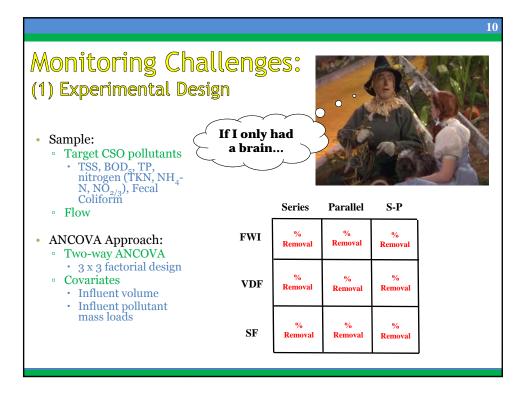
ESF State University of New York College of Environmental Science and Forestry

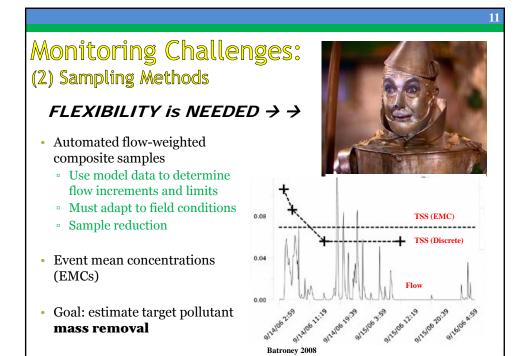
CSO Abatement in Syracuse

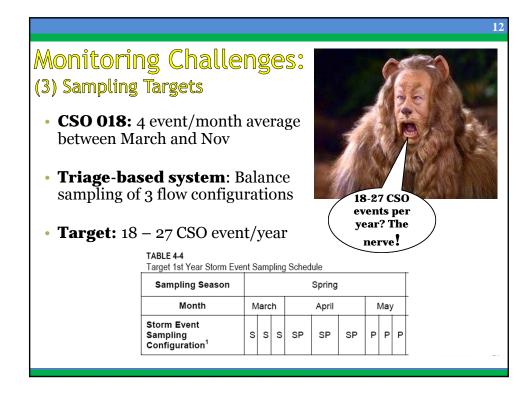
• Amended Consent Judgment, 1998:

5

- Enhance municipal sewage treatment plant
- Reduce volume of CSO
- Fourth Stipulation of the ACJ, 2009:
 - Target: 247 MILLION gallons/year of CSO reduction through green infrastructure (GI) projects
- The County's "Save the Rain" program implementing GI improvements


Monitoring Goals: "Follow the yellow brick road"




• **Experimental:** Compare treatment wetland design parameters

0

- Wetland technologies
- Flow configurationsMonitor at all wetland
 - cell inflow/outflow points
- **Regulatory:** Required monitoring under SPDES
 - Discharge permit modification
 - Monitor at CSO bypass and treatment system "outfall"

The Emerald City:

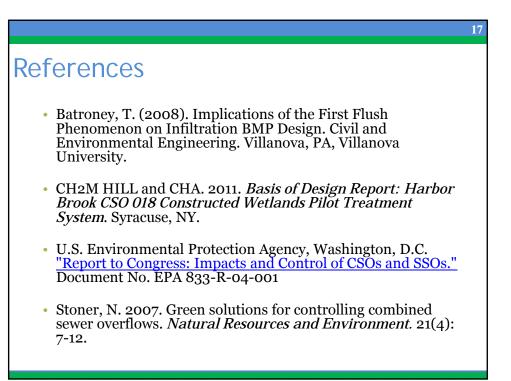
Institutionalizing Monitoring Protocols and Standards for Green CSO Treatment

- Federal CSO Control Policy (1994)
 - Maximize CSO flow to "publicly owned treatment works" (POTWs)
- New York State
 - POTWs subject to SPDES
 - Technical and Operational Guidance documents (TOGs)
 - "CSOs" (1993)
 - "SPDES Permit Development for POTWs" (1998)

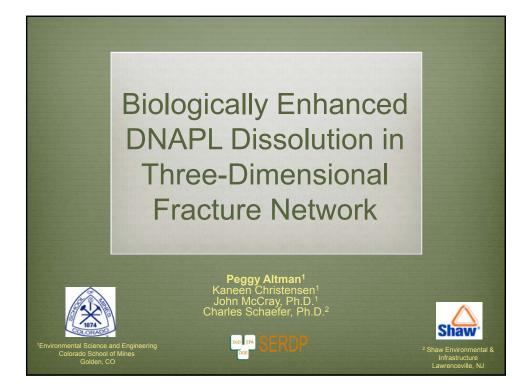
14 "A horse of a different color!" TOGSs for CSO POTWs focused on traditional grey facilities • **Regulatory gap** for monitoring and performance standards of GI under SPDES **CSO** Treatment Wetlands are **green** infrastructure • Treatment standards Hydraulic residence times Largely unstaffed facilities

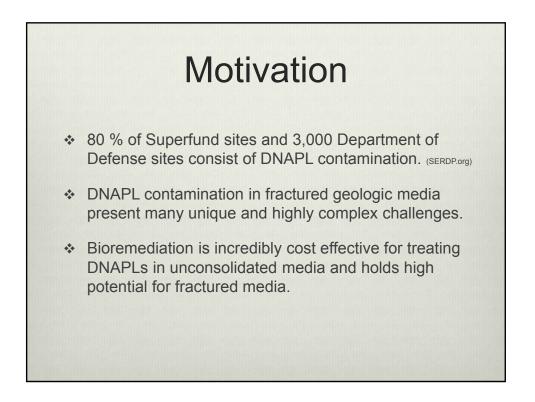
The Great and Powerful Wizard of GI

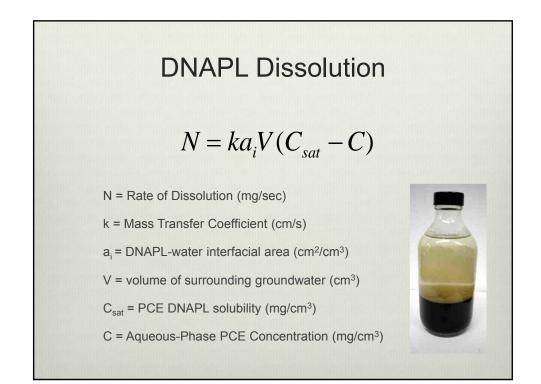
"BRING ME A PILOT MONITORING PROGRAM FOR GREEN CSO TREATMENT!"

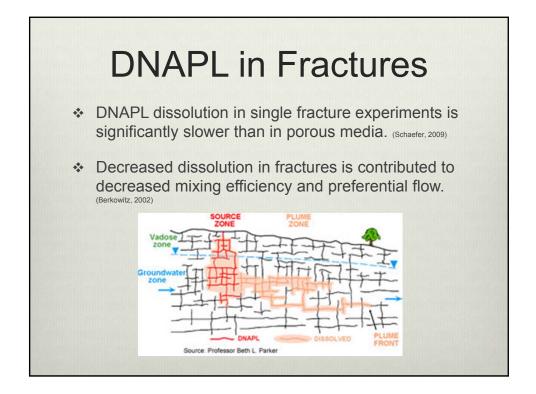

Nonitoring results can be used to develop TOEs for future CREEN ESO treatment in NYS

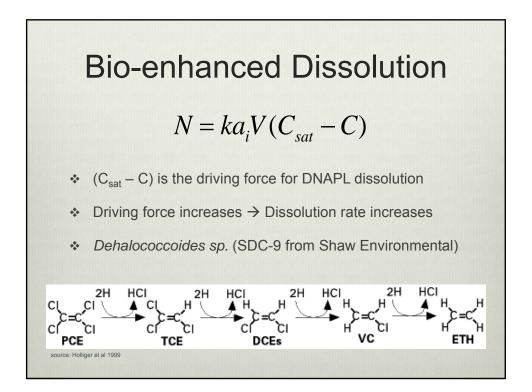
Cogent


Adaptive

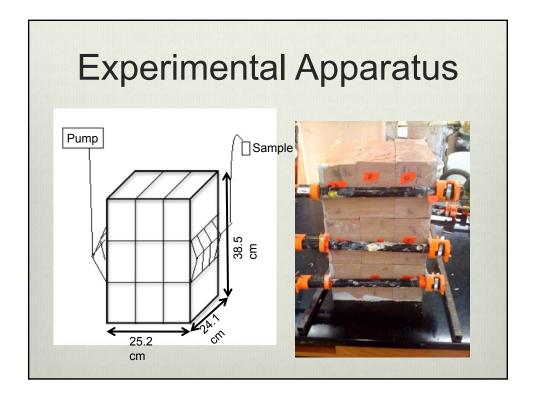

Robust

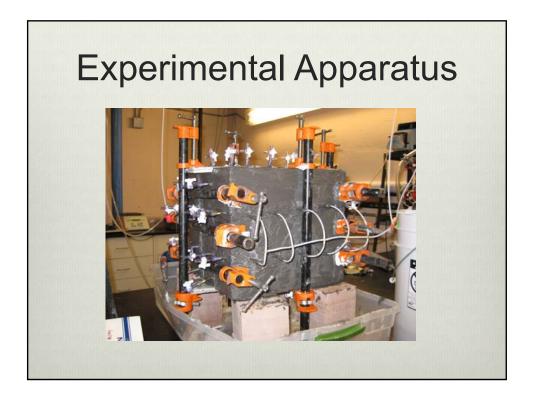


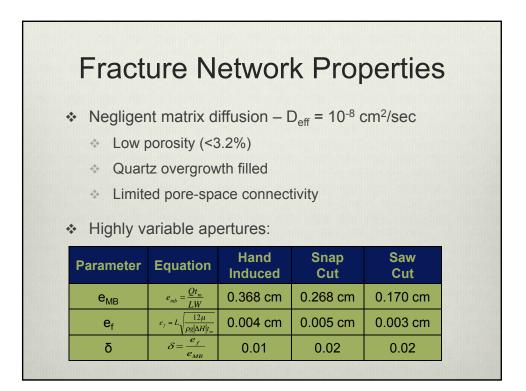

Attachment 4 Biologically Enhanced DNAPL Dissolution in Fracture Zones

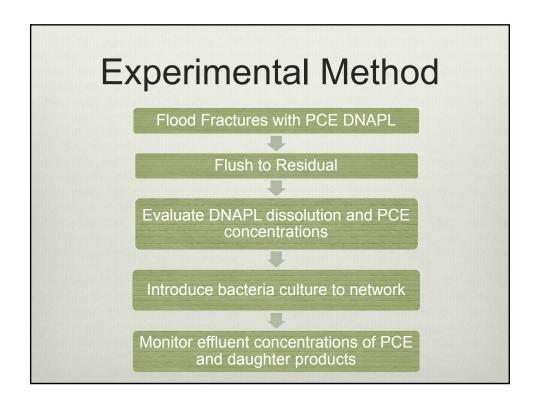


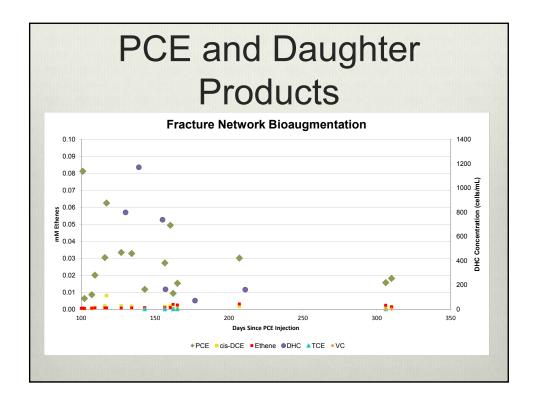
	Fracture Aperture Variability								
and & Fra	 Fracture aperture and aperture variability affect flow and transport through a fracture system. (Becker and Shapiro, 2003) Fracture aperture heterogeneity affects DNAPL distribution and dissolution. (Pankow and Cherry, 1996) 								
Parameter	Relevance	Equation							
e _{MB}	Describes large aperture regions along primary flow path	$e_{mb} = \frac{Qt_m}{LW}$							
e _f	Describes small aperture regions along primary flow path	$e_f = L_{\sqrt{\frac{12\mu}{\rho g \Delta H t_m}}}$							

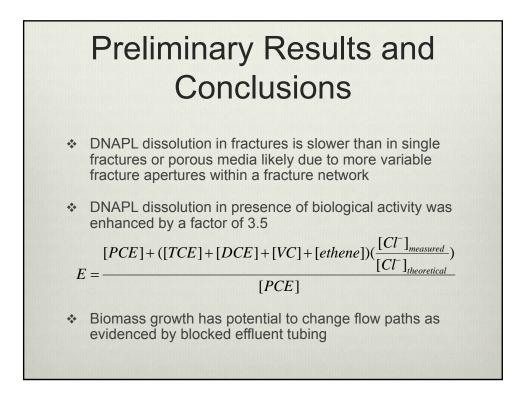


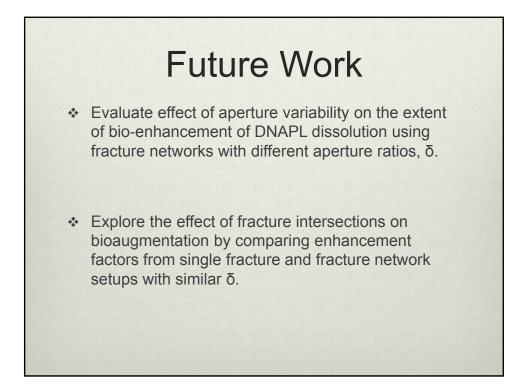


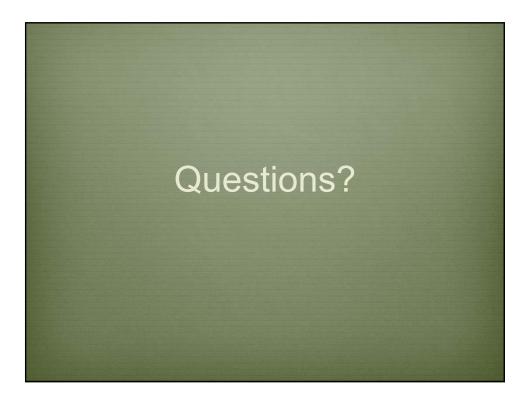

Potential for Successful Bio-Enhancement in Fracture Networks


- Many studies have shown biodegradation can occur near DNAPL source zones and at high aqueous concentrations. (Yang and McCarty, 2000; Cope and Hughes, 2001; Kaplan et al., 2008)
- Dissolution enhancement is more in situations where there is segregation between DNAPL and organisms. (Yang and McCarty, 2000)
- Variable aperture fractures trap DNAPL in big aperture regions with water (with bacteria) filling small aperture regions → segregation
- Fracture intersections limit impact of flow channeling caused by variable apertures → better distribution of microbes

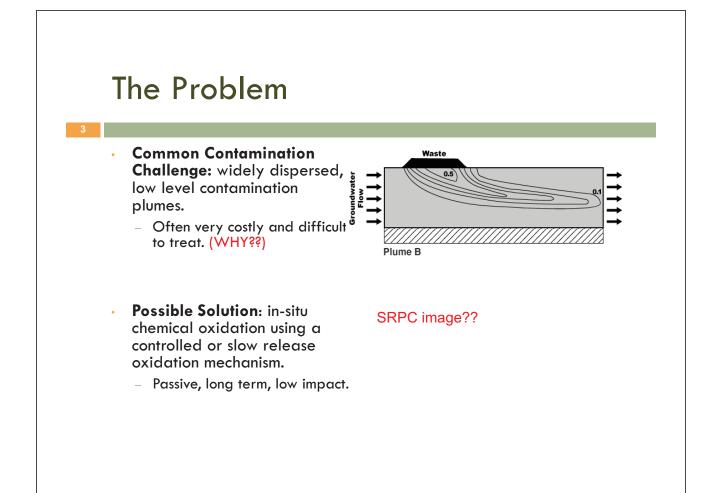



Abiotic PCE Dissolution

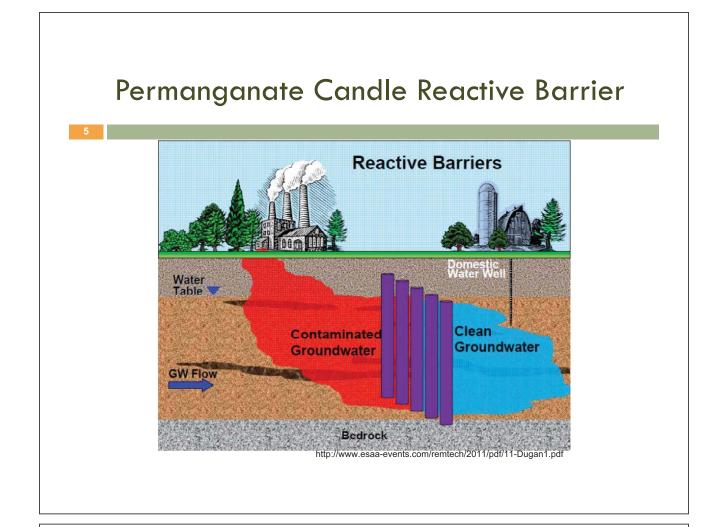

K _L (min⁻¹)	K _i (cm/min)	δ
0.003	1.0 E-4	0.01
0.021	2.9 E-4	0.02
0.007	3.3 E-5	0.02
0.02	3.0 E-5	0.08
0.02	1.0 E-3	0.14
0.84	1.9 E-2	0.33
	0.003 0.021 0.007 0.02 0.02	0.003 1.0 E-4 0.021 2.9 E-4 0.007 3.3 E-5 0.02 3.0 E-5 0.02 1.0 E-3


Schaefer, C. E.; Callaghan, A.; King, J.; and McCray, J.E. Dense Nonaqueous Phase Liquid Architecture and Dissolution in Discretely Fractured Sandstone Blocks. *Environ. Sci. Technol.*, 2009, 43 (6), 1877-1883.

Cho, J.; Annable, M. D.; Rao, P. S. C. Measured mass transfer coefficients in porous media using specific interfacial area. *Environ. Sci. Technol.* 2005, *39*, 7883–7888.


	References	
regard	ell, C.; Stroo, H.; Hinchee, R.; and Johnson, P. (2008) Frequently as g management of chlorinated solvents in soils and groundwaters. <i>Program.</i>	
Solven	Cherry, J. A., Chapman, S. W., Guilbeault, M. A. Review and Anal Dense Nonaqueous Phase Liquid Distributions in Five Sandy Aqui 2003 , <i>2</i> :116-137.	
Maymó-Gate Reduc	, C., Chien, Yt., Gosset, J.M., and Zinder, S.H. (1997) Isolation of vely Dechlorinates Tetrachloroethene to Ethene. <i>Science</i> , 276(531)	a Bacterium That 8), 1568-1571.
Couple	chraa, G., Stams, A.J., and Zehnder, A.J. (1993) A Highly Purified E the Reductive Dechlorination of Tetrachloroethene to Growth. <i>App</i> <i>ology</i> , (59)9, 2991-2997.	Enrichment Culture olied Environmental
	and Shapiro, A. M., Tracer transport in fractured crystalline rock: E sive breakthrough tailing. <i>Water Resources Research</i> 2000, 36(7):	
Treatm	., Towne, R.M., Vainberg, S., McCray, J.E., and Steffan, R.J. (2010 nt of Dense Non-Aqueous Phase Liquid in Fractured Sandstone B & Technology, 44(13), 4958-4964.) Bioaugmentation for Blocks. <i>Environmental</i>

Attachment 5 Slow-Release Permanganate Candles


Introduction

- Worldwide contaminated areas pose a threat to human and environmental health and must be addressed through remediation techniques.
- However, all remediation technologies have some environmental social and economic impact.
- Sustainable remediation techniques strive to maximize environmental cleanup while also providing social and economical benefit.

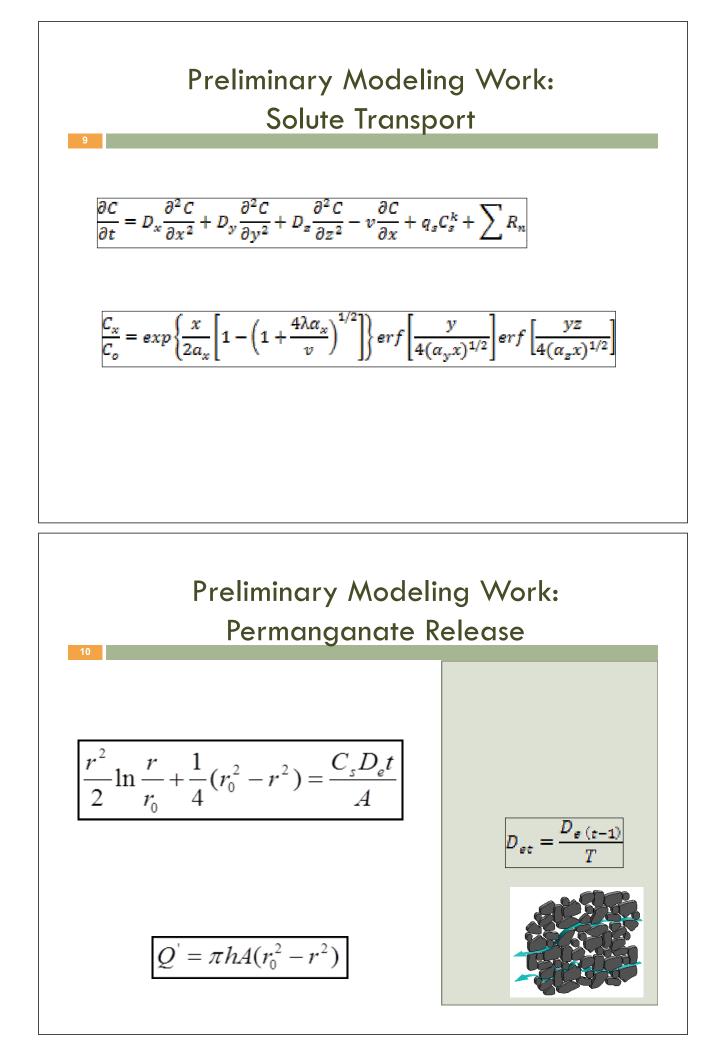
- Slow Released Permanganate Candles (SRPCs), made of a mixture of solid KMnO4 particles and paraffin wax, allow for the sustained delivery of oxidant into the contaminated zone.
- As groundwater flows by the SRPC barrier KMnO4 is dissolved and available for contaminant destruction.

Objectives

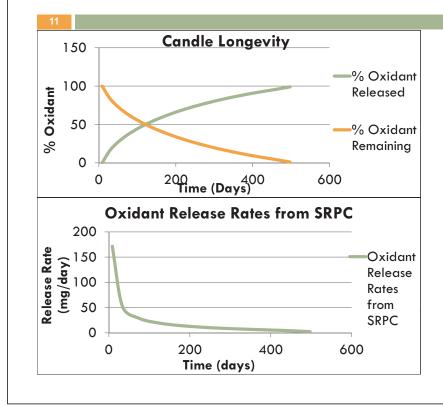
- Develop a user friendly open source design tool to aid in full-scale field implementation of SRPCs.
- Goals of Design Tool:
 - Simulate/Model SRPC release kinetics and permanganate reaction
 - Include the affects of potential inner candle tortuosity on the release of permanganate over time

Design Tool Considerations

- Existing Models do not incorporate changes in candle morphology into oxidant release rates.
- SRPC release rates must be able to keep up with permanganate oxidation reaction rates.
- SRPCs will have initial 'spike' in KMnO4 release from candle surface, then release will slow down with time.


Important Design Tool Input Parameters

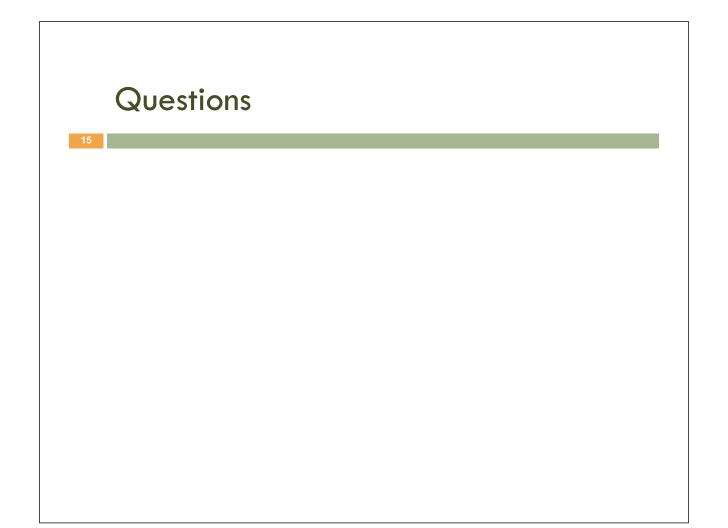
Aquifer/Site Related


- Hydraulic Conductivity
- Cross sectional area to GW flow
- Soil Porosity
- Initial Contaminant Concentration in Groundwater
- Aquifer Volume
- □ Groundwater Velocity
- □ 3-D Dispersivity

SRPC Related

- Initial Oxidant Mass
- Effective Diffusion Coefficient
- Permanganate Flux out of SRPC
- Contaminant Concentration
- Initial SRPC Radius
- Ratio of Available mass of MnO4 : Volume of candle
- Reaction Time

Design Tool Output Examples


Expected Outcomes

- Model Permanganate Release vs. time
- Determine zone of influence of SRPCs
- Determine candle spacing and number of candles based on inputs
- Calculate lifespan of oxidation potential
- Allow for sustainable remediation options to be more accessible

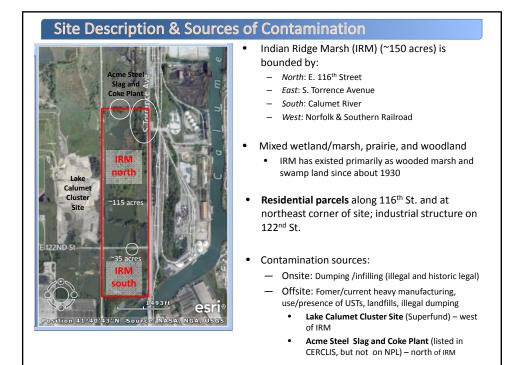
Provides a project timeline, budget and treatment effectiveness estimation Allow for sustainable remediation options to be more accessible

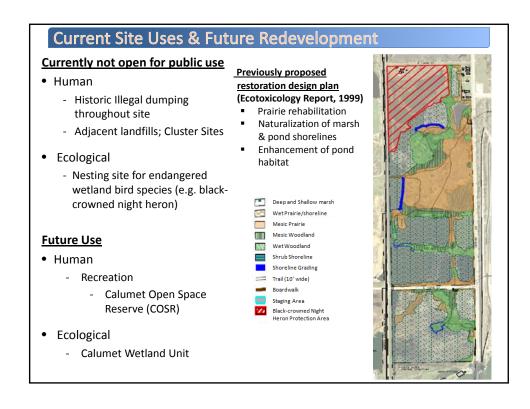
Future Work

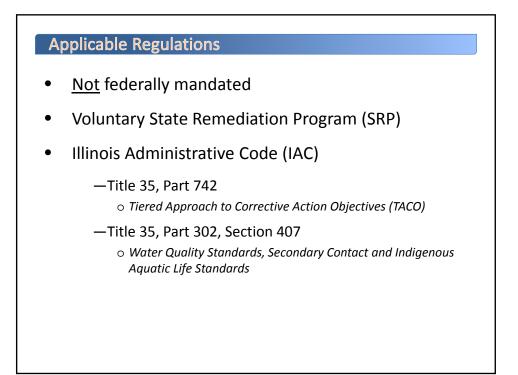
- Scale the design tool from mini SRPC bench tests to field scale
- □ Address how SRPCs will behave in LPM
- Run an optimization program to optimize the initial SRPC radius
- Incorporate Permanganate natural oxidant demand (PNOD) into the model and determine how long it will take to create a reaction zone for contaminant destruction.

Attachment 6 Green and Sustainable Remedy Selection and Design UIC Department of Civil and Materials Engineering

> Green & Sustainable Remedy Selection and Design for Indian Ridge Marsh, Chicago, IL

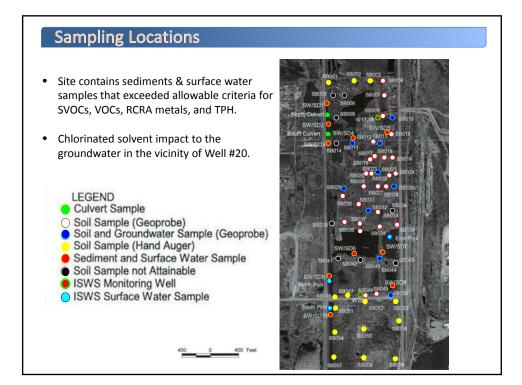

Erin Yargicoglu^{*}, Jennifer Welch^{*}, Gregory Bourgon^{*} and Krishna Reddy^{**} 'Graduate Student, "Professor

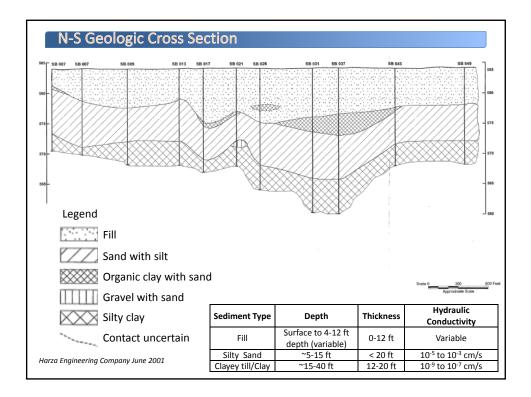

University of Illinois at Chicago


SURF 20 Meeting, Fort Collins, CO July 24-26, 2012

Presentation Outline
Site Background
Location & Restoration Initiatives
Site Characterization
Identified Site Contamination
Human and Ecological Risk Assessment
Remedy Selection
Site-specific Considerations & Remedial Options
Sustainability Metrics & Remedy Selection
Remedial Design
Final Recommendations

Site Characterization - Prior Site Investigations

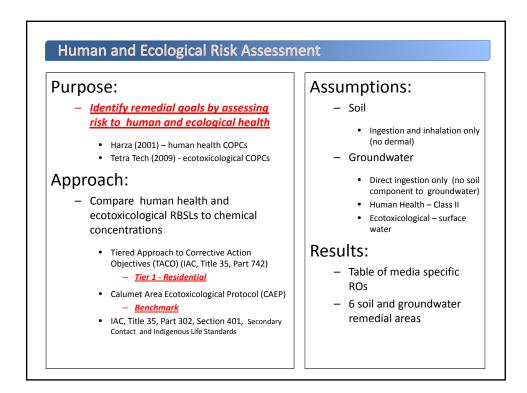

Туре	Performed By
Phase I ESA	DOE
Phase I ESA	Mostardi-Platt Associates, Inc.
Phase II ESA	Earth Tech, Inc.
Phase II ESA	Harza Engineering Co.
Additional sediment data	MWH Americas, Inc.
Additional groundwater data from cluster site	Ecology & Environment (E&E)
Ecotoxicology Evaluation	Tetra Tech Inc.
Phase I ESA	Terracon, Inc.
	Phase I ESA Phase I ESA Phase II ESA Phase II ESA Additional sediment data Additional groundwater data from cluster site Ecotoxicology Evaluation

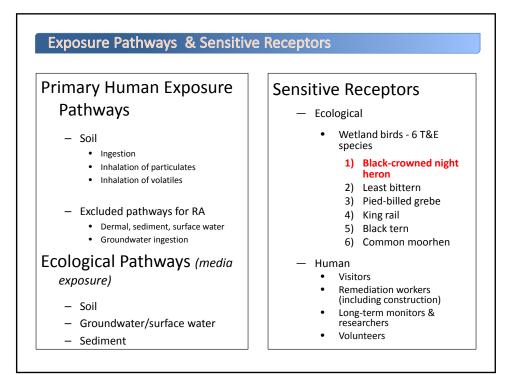

Phase I Results:

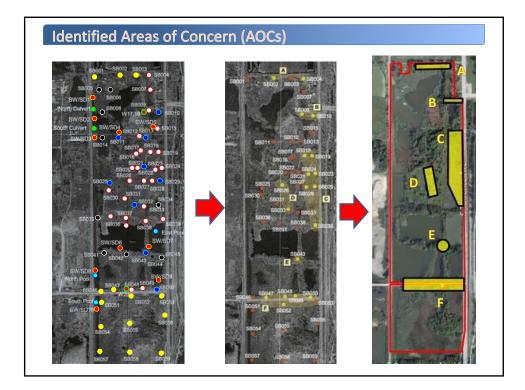
- Formerly SWDS
- Illegal fly/open dumping of slag and other materials
- Adjacent properties: solid waste disposal sites
- Northern property (offsite): Acme Steel Slag & Coke Plant (no longer in operation; listed in CERCLIS database)

Phase II Results:

- Samples taken & analyzed (140+ soil; 20+ GW, 25+ sediment, 25+ SW)
- Documented contamination with SVOCs, VOCs (TCE, PCE, Vinyl Chloride), heavy metals
- LNAPL found in one borehole (Well#20) with Total Petroleum Hydrocarbons (TPH), e.g. gasoline, diesel, oil


Hydrogeologic Considerations - Groundwater Hydrogeology strongly influenced by heterogeneous • distribution of fill materials throughout pre-existing wetland complex > GW flow & direction not easily quantified; highly variable Higher permeability surface soils, fill, and till with a • thickness of ~12-20 ft overly a clay-rich layer \rightarrow acts as an aquitard limiting vertical groundwater migration Primary Bedrock Aquifer: • Silurian Dolomite (Top elevation ~ 500ft) Seasonal groundwater fluctuation of ±3.5 ft influenced by Calumet River and Lake Michigan when water levels are high, and mainly impact surface elevation of North Pool. Possible groundwater contribution from LCCS to the west following E-NE topographic gradient. Actual seepage not observed. Low hydraulic gradient estimated at 0.002 - 0.025 cm/cm


Hydrogeologic Considerations – Surface water


- Surface water impact mainly influenced by overland flow from adjoining LCCS to west, and ACME steel coke facility to north
 - discharge from culverts beneath No & So R.R. and 166th St.
- Surface water flow in IRM is North to South, passing through a culvert beneath 122nd St., then follows a channel along the western site boundary.
- Regular blockage of culvert control structures from debris accumulation can heavily influence surface water elevation and seasonal flooding.
- No flow control structure at discharge point to Calumet River
 - Surface water impact expected during highstage events

Indeno(1,2,3-cd)pyrene (C; Gi) Chrysene (C; Gi) 1991-92 GW data: trans-1,2-trans-Dichloroethene, cis-1,2- Dichloroethene, 1,1-Dichloroethene, Benzene Interpret of the service of the ser		SOIL		GF	ROUNDWATER		SEDIMEN	SURFACE WATE	
VOCs Trichloroethene (TCE) (C; L) Vinyl chloride (C; L, RS) LNAPL (containing total petrolium hydrocarbons (TPH) gasoline, diesel, and oil) Antimony (NC; CS) Iron Lead Iron Arsenic (C; RS) Manganese (NC; CNS) Gadmium (NC; K) Manganese (NC; CNS) IETALS Lead Iron Antimony (NC; CS) Iron Lead Iron Lead Arsenic (C; RS) Manganese (NC; CNS) IETALS Iron Lead Iron Iron Itage Iron Lead Iron Iron Lead Iron Lead Iron Iron Itage Iron Iron Iron Iron Lead Iron Iron Iron Iron Itage Iron Iron Iron Iron <td>PΔHs</td> <td>Benzo(a) anthracene (Benzo(b) fluoranthene Benzo(k) fluoranthene Dibenzo(a, h) anthrace</td> <td>C; GI) e (C; GI) e (C; GI) ne (C; GI)</td> <td>Benzo(a)anth Benzo(b)fluo Benzo(k)fluo Bis(2-Ethylhe Chrysene (C; 1991-92 GW trans-1,2-tra Dichloroethe</td> <td>nracene (C; GI) ranthene (C; GI) ranthene (C; GI) ranthene (C; GI) ranthene (C; L) GI) data: ns-Dichloroethene, cis-1</td> <td></td> <td>Benzo(a)pyrene (C; G Dibenz(a,h)anthracer</td> <td>il)</td> <td></td>	PΔHs	Benzo(a) anthracene (Benzo(b) fluoranthene Benzo(k) fluoranthene Dibenzo(a, h) anthrace	C; GI) e (C; GI) e (C; GI) ne (C; GI)	Benzo(a)anth Benzo(b)fluo Benzo(k)fluo Bis(2-Ethylhe Chrysene (C; 1991-92 GW trans-1,2-tra Dichloroethe	nracene (C; GI) ranthene (C; GI) ranthene (C; GI) ranthene (C; GI) ranthene (C; L) GI) data: ns-Dichloroethene, cis-1		Benzo(a)pyrene (C; G Dibenz(a,h)anthracer	il)	
Mercury (NC; CNS, IS) Lead Arsenic (C; RS) Manganese (NC; CNS) Manganese (NC; CNS) Cadmium (NC; K) Chromium Copper Lead Nickel Thallium		Trichloroethene (TCE)	(C; L)	LNAPL (conto hydrocarbon:	ining total petrolium	and			
				Lead Manganese (NC; CNS)			Arsenic (C; RS) Cadmium (NC; K) Chromium Copper Lead Nickel Thallium	-	

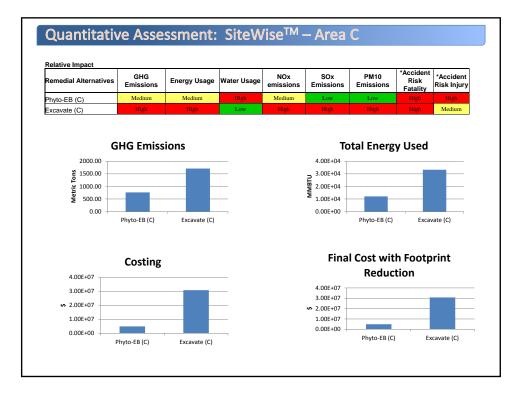
Contaminated AOCs	Sumr	nary						
		Surfac	e area		ia for diation	Contar	mum th to ninant t)	Average Depth to Water
		ft²	acres	Soil	GW	Soil	GW	Table (ft)
	Α	60,000	1.4	x		2.0		1.3
D	В	27,000	0.6	x	x	3.0	14	2.8
	с	320,000	7.3	x	x	6.5	13	6.6
	D	85,000	2.0	x		7.0		4.1
Contraction of Contraction	E	50,000	1.1	x	x	2.0	13	2.5
Same and Street	F	186,000	4.3	x	x	2.0	19	2.3
E The second	Total	728,000	<u> 16.7</u>					1]
	pH		Dissolve	ed O _{ara}	Hv	draulic	Conduct	tivity (K)
	7.8 - 9		7.9 - 12.				⁻⁵ – 10 ⁻³	
	*In som	ie areas, pH	I as high	as 12				

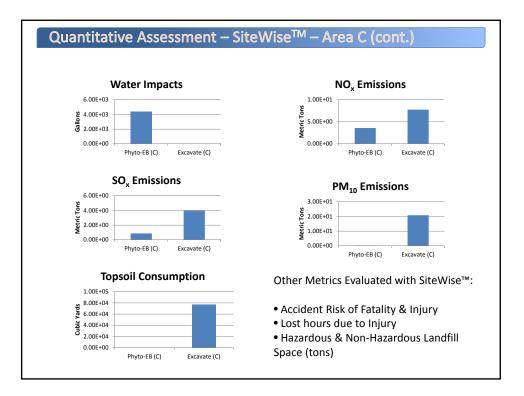
	Sample ID						Calumet Are	a Ecotoxicolo	gy Protocol
Contaminants of Potential Concern (COPC)	(Maximum Concentration)	Data Source	Sample Depth (ft bgs)	Concentration (mg/kg)	TACO Tier 1 R Ingestion (mg/kg)	esidential SROs Inhalation (mg/kg)	Background (mg/kg)	(CAEP) SROs Threshold (mg/kg)	Benchmark (mg/kg)
				Area A	((6/6/	(((8/8/
Benzo(a)pyrene	SB002	Harza (2001)	2	0.22	0.09		0.68	1	
	·			Area B					
Benzo(a)anthracene	SB009		3	3.62	0.9		1.1		
Benzo(a)pyrene	SB009		3	3.13	0.09		0.0013	0.0113	0.113
Benzo(b)fluoranthene	SB009	Harza (2001)	3	3.41	0.9		1.5	1	10
Dibenzo(a,h)anthracene	SB009		3	0.47	0.09		0.2		
Indeno(1,2,3-c,d)pyrene	SB009		3	1.49	0.9		0.86	1	10
			-	Area C					
Benzo(a)anthracene	SB028		6.5	44.1	0.9		1.1		
Benzo(a)pyrene	SB028		6.5	29.5	0.09		0.68		
Benzo(b)fluoranthene	SB028		6.5	26.8	0.9		1.5	1	10
Benzo(k)fluoranthene	SB028		6.5	31.8	9				
Dibenzo(a,h)anthracene		Harza (2001)							
	SB029		2.5	8.43	0.09		0.2		
Indeno(1,2,3-c,d)pyrene	SB028		6.5	12.9	0.9		0.86	1	10
Lead	SB023		5.5	1800	400		36	16	430
Mercury	SB023		5.5	81.3	23	10	0.06	0.07	1.3
				Area D					
Benzo(a)pyrene	SB032	Harza (2001)	7	0.21	0.09		0.0013	0.0113	0.113
				Area E					
Lead	SB043	Harza (2001)	2	499	400		36	16	430
	r			Area F					
Benzo(a)pyrene	SB050		2	1.23	0.09		0.0013	0.0113	0.113
Tetrachloroethylene	SB050		2	21.1	12	11			
Trichloroethylene	SB049		1	41.2	58	5			
Benzo(a)anthracene	SB050	Harza (2001)	2	2.6	0.9		1.1	-	
Benzo(b)fluoranthene	SB050	narza (2001)	2	1.2	0.9		1.5	1	10
Dibenzo(a,h)anthracene	SB050		2	0.28	0.09		0.2		
Vinyl Chloride	SB050		2	0.64	0.46	0.28			
Lead	SB049		1	648	400		36	16	430

Groundwater RA-RO Table

	Sample ID (Max. Data Concentration) Source			Concentration (mg/L)	TACO Tier 1 Residential GROs	Calumet Area Ecotoxicology Protocol Surface Water ROs ¹		
Contaminants of Potential Concern (COPC)			Maximum Contaminant Depth (ft bgs)		Direct Ingestion of Class II GW (mg/L)	Background (mg/L)	Threshold (mg/L)	Benchmarl (mg/L)
			Are	a B				
Manganese	SB010	Harza (2001)	14	1.11	10	0.042	1.0	1.0
			Are	a C				
Manganese	SB029	Harza (2001)	13	1.19	10	0.042	1.0	1.0
			Are	a E		_		
Manganese	SB043	Harza (2001)	13	1.48	10	0.042	1.0	1.0
			Are	a F				
Benzo(a)anthracene	SB050		10	1.50E-03	6.50E-04		3.00E-05	2.00E-04
Vinyl Chloride	SB056		16	5.70E-02	1.00E-02			
Iron	SB057	Harza (2001)	17	16	5	0.71	1	1
Lead	SB058		18	2.56	0.1	< 0.002	1.67E-02	3.18E-01
Manganese	SB059		19	1.8	10	0.042	1.0	1.0
		Additional Sa	mples Outside o	f Areas of Soil Cont	amination			
Manganese	SB025	Harza (2001)	14	1.82	10	0.042	1.0	1.0

Area	Media	СОРС	Maximum Depth of Contamination	Contaminant Concentration	RO	% Exceedence	Govern	ning RO
			(ft bgs)	(mg/kg or mg/L)	(mg/kg or mg/L)			Ecoto
Α	Soil	Benzo(a)pyrene	2	0.22	0.09	144	Х	
В	Soil	Benzo(a)anthracene		3.62	0.9	302	х	
		Benzo(a)pyrene		3.13	0.09	3,378	х	
		Benzo(b)fluoranthene	3	3.41	0.9	279	х	
		Dibenzo(a,h)anthracene		0.47	0.09	422	х	
		Indeno(1,2,3-c,d)pyrene		1.49	0.9	66	х	
	GW	Manganese	14	1.11	1.0	11		х
С	Soil	Benzo(a)anthracene		44.1	0.9	4,800	х	
		Benzo(a)pyrene		29.5	0.09	32,678	х	
		Benzo(b)fluoranthene		26.8	0.9	2,878	х	
		Benzo(k)fluoranthene		31.8	9	253	х	
		Dibenzo(a,h)anthracene	6.5	8.43	0.09	9,267	x	
		Indeno(1,2,3-c,d)pyrene		12.9	0.9	1,333	х	
		Lead		1800	400	350	х	
		Mercury		81.3	1.3	6,154		х
	GW	Manganese	13	1.19	1.0	19		х
D	Soil	Benzo(a)pyrene	7	0.21	0.09	133	х	
E	Soil	Lead	2	499	400	25	х	
	GW	Manganese	13	1.48	1.0	48		
F	Soil	Benzo(a)pyrene		1.23	0.09	1,267	х	
		Tetrachloroethylene		21.1	11	92	х	
		Trichloroethylene		41.2	5	724	x	
		Benzo(a)anthracene		2.6	0.9	189	х	
		Benzo(b)fluoranthene	2	1.2	0.9	33	х	
		Dibenzo(a,h)anthracene		0.28	0.09	211	х	
		Vinyl Chloride		0.64	0.28	129	x	
		Lead		648	400	62	x	
	GW	Benzo(a)anthracene		1.50E-03	2.00E-04	650		х
		Vinyl Chloride		5.70E-02	1.00E-02	470	х	
		Iron	19	16	1	1,500		х
		Lead		2.56 1.8	0.1	2,460	х	


Remedial Te	chnology Selection - Soil
Technology	Disqualifying Site Conditions
Soil Vapor Extraction	Less effective for removal of SVOCs than VOCs; N/A for saturated soils; ineffective for heavy metals
Soil Washing	Ineffective for low-permeability soils; high cost (\$\$\$)
In-situ Chemical Oxidation	Not appropriate for mixed contaminant classes
Stabilization/ Solidification	Shallow depth & large distribution of soil COPCs; potential for desorption of heavy metals (lead) from cement matrix over time; detrimental to plant growth & wetland restoration
Monitored Natural Attenuation (MNA)	Ineffective with some radioactive metals, and has potential for contaminant migration
Electrokinetic Remediation	Potential for significant soil pH changes incompatible with long-term habitat/wetland restoration goals
Thermal Desorption	Ineffective for heavy metals, high water table requires dewatering, Ineffective with silty soils
Vitrification	Inefficient with organic-rich soils, energy intensive, large treatment area
Bioremediation	Heavy metals resistant to degradation, partial degradation of organics generates potentially more toxic intermediaries, difficult to maintain optimal environmental conditions


Remedial Technology Selection - Groundwater

Technology	Disqualifying Site Conditions
Pump & Treat	Residual contamination due to tailing, rebound; high cost (\$\$\$), less effective in silty and heterogeneous soils
In-Situ Flushing	Ineffective for silty and heterogeneous soils, unintentional contaminant spread may occur; large treatment area
Permeable Reactive Barrier (PRB)	Low horizontal hydraulic gradient, potential for clogging due to iron precipitation, potential need for media replacement
Air Sparging	Ineffective for heavy metals, inefficient for silty and heterogeneous soils.
Bioremediation	Heavy metals resistant to degradation, partial degradation of organics generates potentially more toxic intermediaries, inefficient in low-permeability or heterogeneous soils, difficult to maintain optimal environmental conditions

Soil Technology	Qualifying Site Conditions	
Phytoremediation/ enhanced Biostimulation	Effective with a variety of mixed contaminants (heavy metals, PAHs, VOCs, SVOCs) in soil and groundwater	
Excavate	Effective with non-hazardous and hazardous soils (PCBs, chlorinated solvents, lead)	
Cap/Cover + vertical barrier	Prevents infiltration, which can lead to leaching	
GW Technology	Qualifying Site Conditions	
Phytoremediation/ enhanced Biostimulation	Effective with a variety of mixed contaminants (heavy metals, PAHs, VOCs, SVOCs) in soil and groundwater	
In-situ Containment – Slurry Trench	Effective for containing a variety of organic & inorganic contaminants, it's cost-effective	

	Affected					
Stressors	Media	Mechanism/Effect		Sco	re	
	meana		Excavate	Phytoremediation	Cap	Slurry Trench
Substance Release/Production			LACAVATE	ritytoremediation	Cap	Sidily Henen
Airborne NOx & SOx	Air	Acid rain & photochemical smog	Average	Below Avg	Average	Average
Chloro-fluorocarbon vapors	Air	Ozone depletion	Below Avg	Below Avg	Average	Average
Greenhouse gas emissions	Air	Atmospheric warming	Above Avg	Below Avg	Average	Average
Airborne particulates/toxic vapors/gases/water vapor	Air	General air pollution/toxic air/humidity increase	Average	Below Avg	Average	Average
Liquid waste production Water Water toxicity/sediment		Average	Average	Below Avg	Below Avg	
Solid waste production	Land	Land use/toxicity	Above Avg	Average	Below Avg	Average
Thermal Releases						
Warm water	Water	Habitat warming	N/A	Average	N/A	N/A
Warm vapor	Air	Atmospheric humidity	N/A	Average	N/A	N/A
Physical Disturbances/Disruptions						
Soil structure disruption	Land	Habitat destruction/ soil Infertility	Above Avg	Average	Above Avg	Above Avg
Noise/Odor/Vibration/Aesthetics	General environment	Nuisance & safety	Above Avg	Below Avg	Above Avg	Average
Traffic	Land; general environment	Nuisance & safety	Above Avg	Below Avg	Above Avg	Average
and Stagnation Land; general Remediation time; cleanup environment efficiency;re-development		Above Avg	Above Avg	Average	Average	
Resource Depletion/Gain (Recycling)						
Petroleum (energy)	Subsurface	Consumption	Average	N/A	Average	Average
Mineral	Subsurface	Consumption	Average	N/A	Below Avg	Average
Construction materials (soil/concrete/plastic)	Land	Consumption/reuse	Above Avg	Below Avg	Above Avg	Average
Land & space	Land	Impoundment/reuse	Average	Above Avg	Above Avg	Average
Surface water & groundwater	Water, land (subsidence)	Impoundment/ sequester/reuse	Average	Average	Above Avg	Average
Biology resources Air, water, land/forest, regene subsurface regene		Species disappearance/ diversity reduction regenerative ability reduction	Average	Average	Above Avg	Above Avg

	minary evaluation of potential remedial technologies allowed disqualification of multiple
	nods based on site-specific conditions: Incompatibility with heterogeneous and silty soils
	Saturated soils due to high water table
	Chemical impacts on soil composition unsuitable for habitat rehabilitation
	Uncertainty of long-term containment
	Incompatibility with particular COC's and Mixtures
	Low or uncertain groundwater flow
	itative (GREM) and Quantitative analysis (Sitewise™, Sustainable Remediation Tool™) allow
	parison of energy inputs and environmental sustainability of remaining technologies :
	Site disturbance
	Material, energy, and total water inputs
	Particulate (PM ₁₀) and GHG emissions (i.e. CO ₂ , NO _x , SO _x) Cost estimate comparison
	Long-term waste disposal and treatment needs
	Worker health & safety risks
	Specific engineering requirements: 122 nd St. causeway located within remediation Area l es technical challenges influencing final cost and input projections
inal	Remedial Selection:
	Phytoremediation & Enhanced Biostimulation

Mechanism	Description	Remedial Goal			
Phytosequestration of some contaminants in rhizosphere via exudation of phytochemicals & transport proteins & cellular processes on root		Containment			
Rhizodegradation	hizodegradation bizodegradation of phytochemicals enhances microbial degradation of contaminants in the rhizosphere				
Phytohydraulics	Ability of plants to evapotranspire sources of surface water and groundwater	Containment via hydrologic controls; will be applied at riparian buffer zones*			
Phytoextraction	The ability of plant roots to extract, transport & accumulate contaminants aboveground in the shoots/leaves	Removal of COPC by disposal of plants*			
Phytodegradation	Ability of plants to break down contaminants in the transpiration stream via internal enzymatic activity & photosynthetic oxidation/reduction	<i>In-Situ</i> degradation of contaminants			
Phytovolatilization	Removal of COPCs (VOC, PAHs through plants				

Phytoremediation - Design Specifications

Selected Tree & Plant Species:

- > Chosen based on maximum uptake of organic and inorganic contaminants
- \succ Demonstrated remedial efficacy at sites in the region
- Argonne National Laboratory-East : nearby site; similar climate, local flora & fauna, and hydrogeology
- Phreatophyte tree stands (Willows, Cottonwoods, and Poplars)
- High transpiration and growth rates; high water consumption
- Long root systems that maximize contact with pollutants in groundwater
- Grasses and legumes used as vegetative cover within and around treated areas
 - Minimize erosion and stabilize soil; also serve to remediate shallow subsurface contamination
 - Enhance overall water consumption and reduce infiltration (minimizing leachate production)
 - Keep shallow soils dry to promote deeper rooting depths of the phreatophytic trees
- Riparian buffer of Reeds, Bulrush & Cattails around surface waters
 - Increase infiltration & minimize erosion of wetland shores; minimize runoff & migration of contaminated surface waters

Existing Vegetation:

- Native vegetation with known phytoremedial properties left in place
- Vegetation not applicable for phytoremediation AND not considered an invasive species will be cleared and chipped for compost
- Non-native invasive species will be removed completely (not composted to reduce possibility of reincorporation of invasive species into soil)

Existing Vegetation

- Only 51% of on-site vegetation identified as native species (marked by an *)
- Dominant existing vegetation Common Reed (*Phragmites* spp.) is more tolerant to high salinity (~20,000 mg/kg) than native vegetation
 - Common Reed also provides interim nesting habitat for black-crowned night heron

Plant Name/Species	Targeted Contaminants	Recommendation for Use?		
Common water plantain (Alisma subcordatum)*	TBD or N/A	Determination based on analysis		
Path rush (Juncus tenuis)*	TBD or N/A	Determination based on analysis		
Small duckweed (Lemna minor)*	Pb, Cr(VI), certain pesticides	Yes		
Switchgrass (Panicum virgatum)	Anthracene, PAHs, Pyrene	Yes		
Common reed (Phragmities spp.)	Benzene, Trichloroethane, Toulene, PCE, TCE, Cu, Fe, Mn	Yes		
Eastern cottonwood (<i>Populus</i> deltoides)	TCE, PCE	Yes		
Box elder (Acer negundo)	TBD or N/A	Determination based on analysis		
Hackberry (Celtis occidentalis)	TBD or N/A	Determination based on analysis		
Green ash (Fraxinus penn.)	TBD or N/A	Determination based on analysis		

Enhanced Biostimulation

Purpose:

- Support plant growth & enhance phytoremedial processes
- Stimulate the natural microbial population in rhizosphere of trees
- Improve overall soil quality & stimulate soil microbial community

Strategy: Incorporation of O₂ and nutrients in tilled soil

- O₂ Amendment
 - Supplied via **ORC**s (Oxygen Release Compounds MgO₂) ≻Instead of direct injection (reducing energy and equipment costs) >Soil pH must be monitored (MgO₂ can raise pH)
- NPK fertilizer (10-10-10)

>One initial application after tree installation

>Further applications as needed to prevent excessive losses

Additional amendments as needed

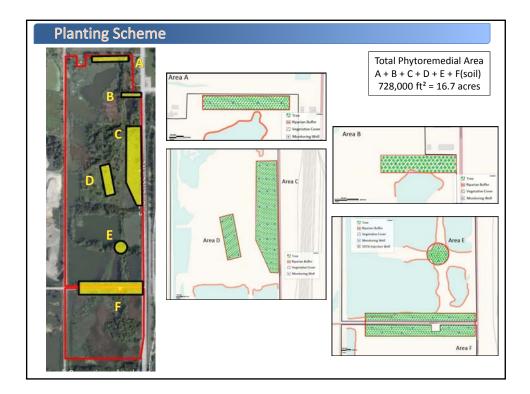
>Granular Sulfur or $Al_2(SO_4)_3$ to reduce soil pH to levels for optimal tree growth (ex: Poplar grows optimally with pH of 5.5-8.0) at select locations >Additional organic compost each spring to promote optimal plant growth & maintain pH

Phytoremediation – Implementation

Time of Year

 Trees and plants installed early in year (spring) to take advantage of entire growing season; remedial progress greatest during growth

Soil Preparation


- Areas to be tilled to aerate soil prior to planting (12-24 in); soil amendments added during tilling, eliminating need for injection wells
- Soil should be damp during installation to minimize dust production & potential exposure of contaminated soils/sediments to workers

Dimensions & Placement

- Each tree placed in <u>2 ft diameter trench</u> dug to <u>variable depths 10-15 ft bgs</u>
- In areas with GW contamination, 50% of trees will be lined with tree wells to promote downward root growth into the aquifer
- − Trees spaced ~10 feet apart to achieve high growth density \rightarrow maximum remedial efficiency

*Area E Only: Installation of 1 injection well for application of EDTA (chelating agent) to enhance Pb uptake

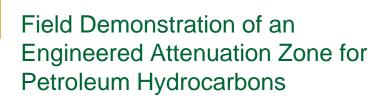
Planting	; Schem	e						
	Seed Mix (Ibs)	swolliW	Cottonwoods	Hybrid Poplars	Fencing (yards)	Fertilizer (lbs)	Rows	Columns
Area A	128	48	48	96	481	180	6	32
Area B	54	21	21	43	280	81	5	17
Area C	640	250	250	500	1040	960	69	13
Area D	170	67	67	135	270	255	27	10
Area E	100	40	40	80	225	150	10	10
Area F(North)	141	36	36	72	780	325	4	35
Area F(South)	202	82	82	165	805	250	6	55
Sum	1435	544	544	1091	3381	2201	127	299

Final Recommendations

- Initiate phytoremediation at all AOCs using mixed tree stands of Willows, Cottonwoods, and Poplars, supplemented by a vegetative cover of grasses and legumes to address shallow subsurface soils
 - Riparian buffer zones of cattails, bulrush, and reeds around surface water bodies to minimize runoff and interaction with contaminated groundwater
- Monitor remedial progress and ensure potential adverse effects on native vegetation and wildlife are not incurred during remediation; ensure nonnative/invasive species are not introduced into seedbank
- > Install additional monitoring wells at under-represented areas for LTM
- Ensure adequate habitat exists for seasonal migratory birds that depend on wetlands & is preserved during earthwork & agricultural activities
- Gain public support for project by increasing public awareness of phytoremediation & sustainable practices used at IRM
 - Involve community through educational activities & bulletins describing habitat restoration, native species and phytoremedial progress

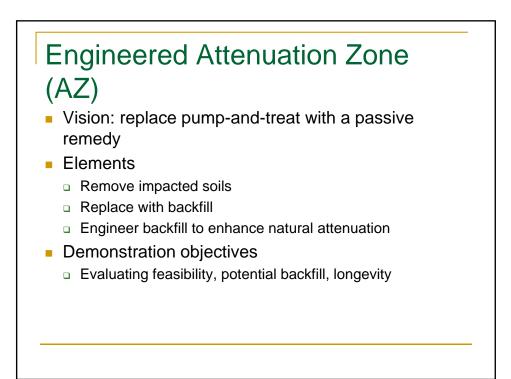
Acknowledgements

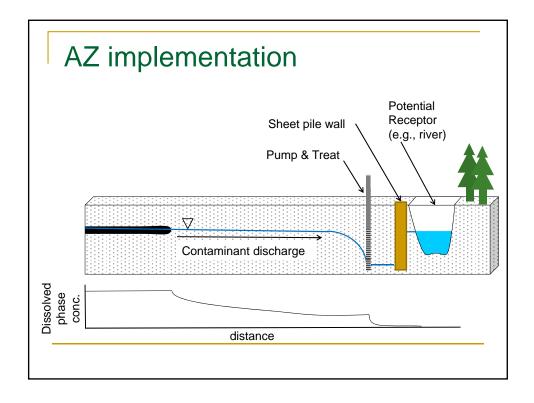
SURF

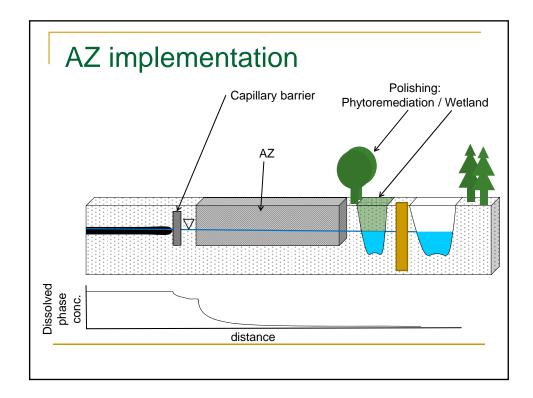

(UIC Student Chapter and Travel Support)

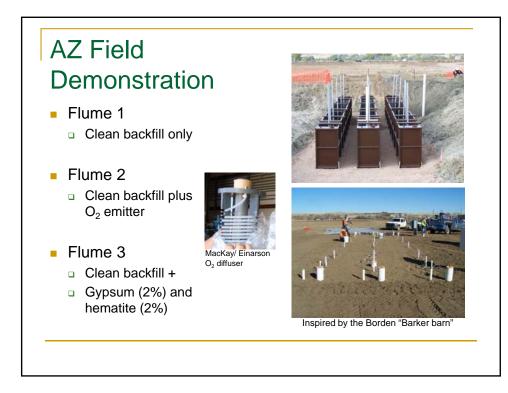
Chicago Park District

Terracon Consultants, Naperville, IL

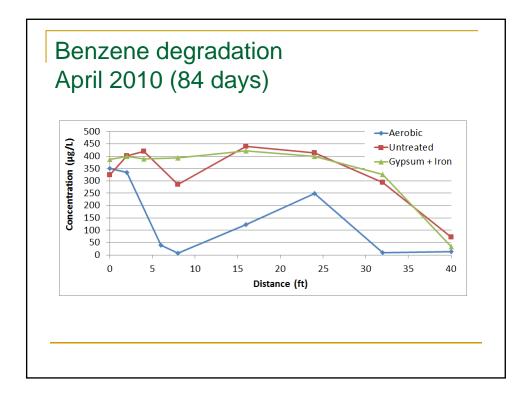

Thanks for listening!

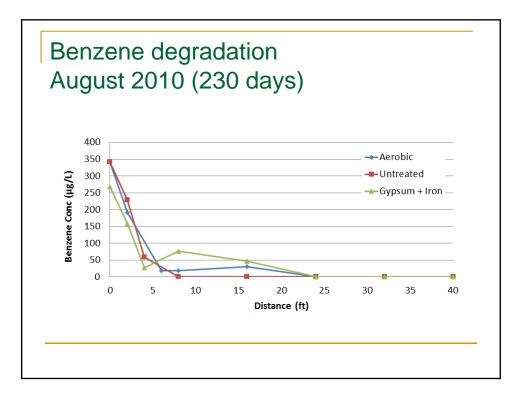

Attachment 7 Engineered Attenuation Zone for Petroleum Hydrocarbons

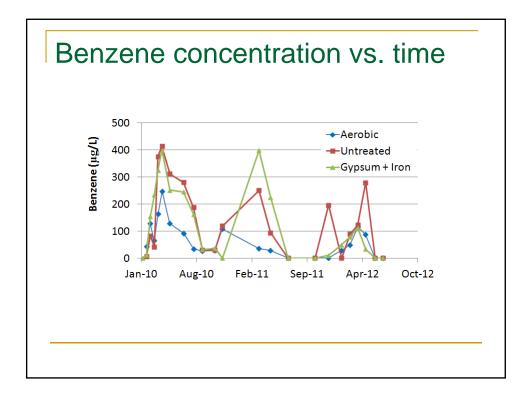


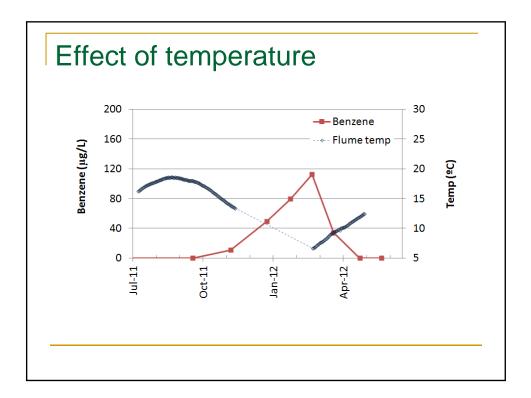

Mitch Olson and Tom Sale; Colorado State University

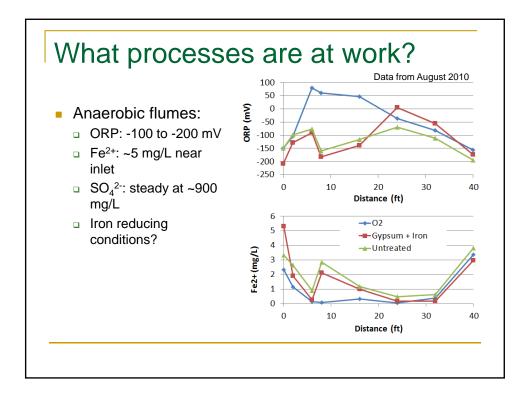
Sustainable Remediation Forum SURF 20 Fort Collins, Colorado July 24-26, 2011

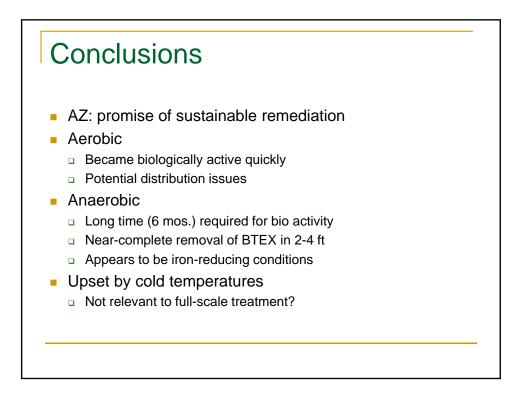


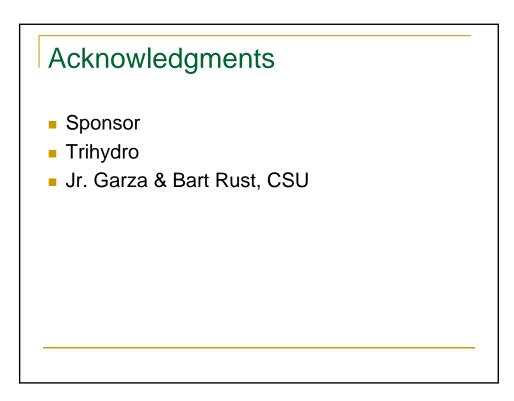


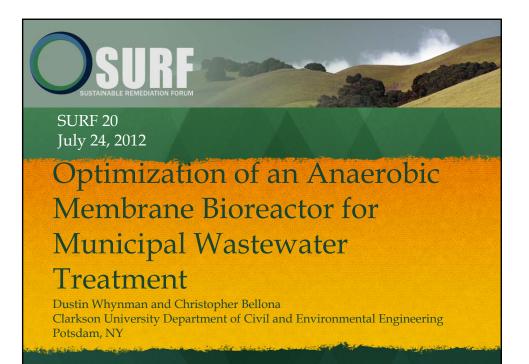










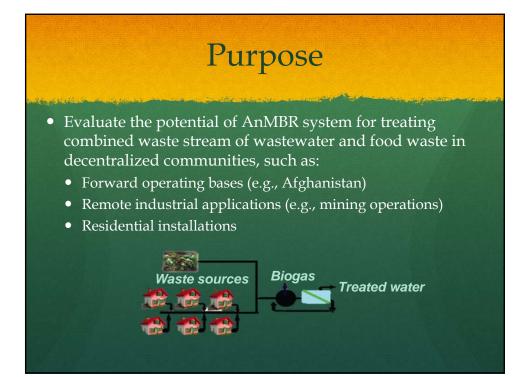


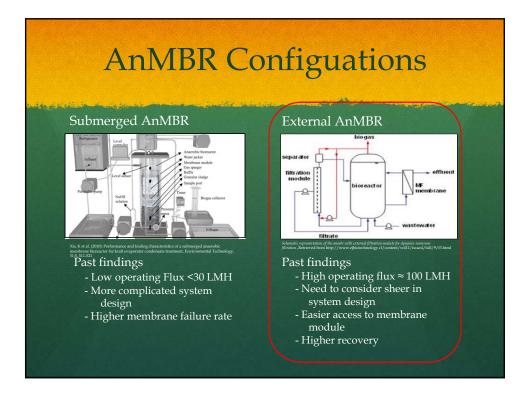
Attachment 8 Anaerobic Membrane Bioreactor Optimization

Traditional Wastewater Treatment Options

• Activated sludge

- Most common form of wastewater treatment
- Very energy intensive
- All stored potential energy in wastewater is lost
- Short treatment time of 1-5 hours
- Higher quality effluent than anaerobic digestion


• Anaerobic digestion


- Microbes convert organic material to methane
- Produces a renewable energy source (biogas)
- Much longer treatment time 30-50 days

Anaerobic Treatment of Primary Wastewater

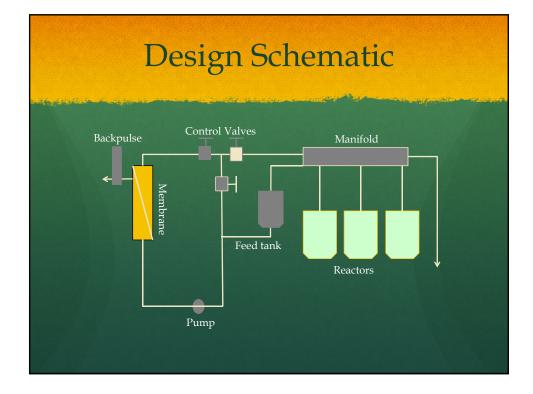
• Anaerobic membrane bioreactors may offer advantages for primary wastewater treatment

- Potential source of energy (biogas)
- Reduced tank volume/footprint and HRT compared to conventional anaerobic digestion
- Less energy intensive than aerobic digestion
- Disadvantages to anaerobic digestion and AnMBR
 - Low strength
 - Past results have shown that an additional carbon source may be necessary
 - Effluent water quality
 - Membrane fouling

Research Objective

- Evaluate the effect of cross flow velocity on AnMBR performance
 - Fouling
 - Biogas content and production
 - Effluent water quality
- Evaluate the effect of HRT on AnMBR performance
 - Biogas content and production
 - Effluent water quality

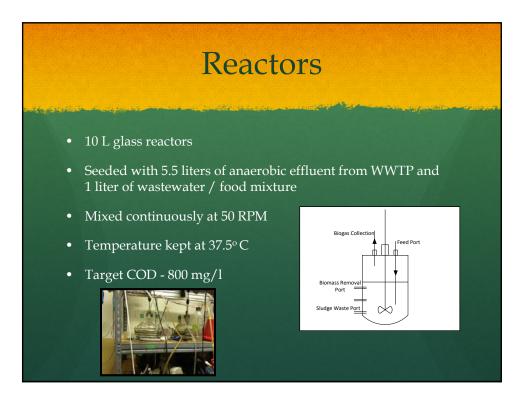
- The reactor was started at a 10 day HRT
- Membrane was started with a CFV of 1.5 m/s. This will later be changed to 1.0 and then 0.5 m/s.
- After finding the optimum CFV for the system, the HRT will be lowered to find the lowest possible retention time that still provides adequate treatment.
- Membrane is cleaned by backpulsing at high pressure.

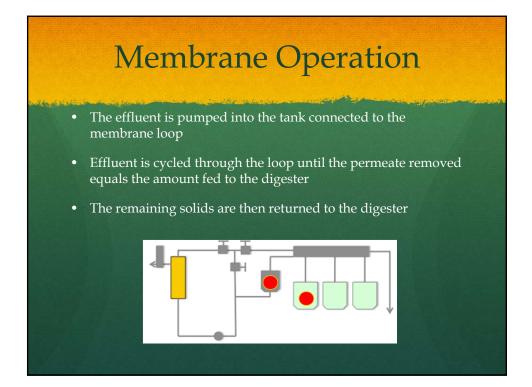

Membrane System

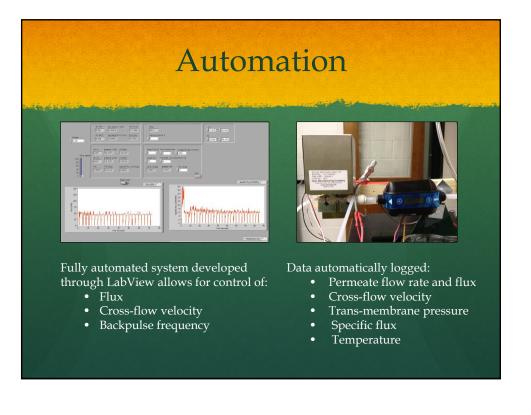
- Ceramic membrane
 - 25 mm long
 - 5 cm² surface area
 - 0.2 µm pore size
 - Al_2O_3 support
 - ZrO₂ active layer

• Backpulsing

• 3 ml of permeate used for each back-pulse cycle

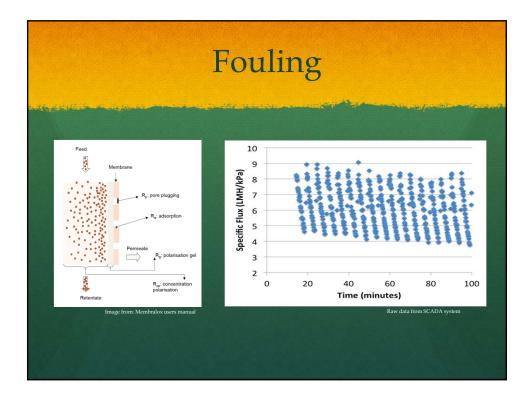





Substrate

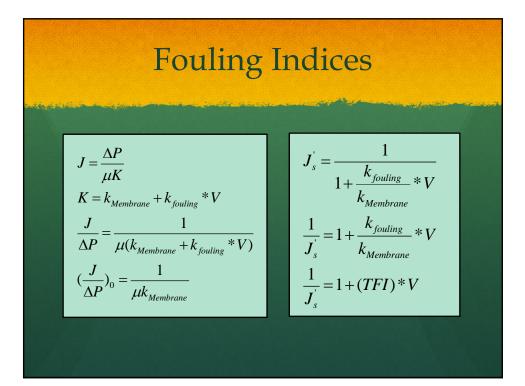
• The digesters are fed a mixture of 2.3 grams of food waste per liter of municipal wastewater.

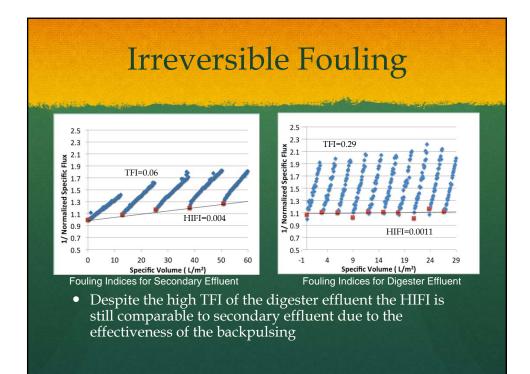
Parameter	
COD	100 grams COD/kg
COD	0.5-0.7 grams COD/kg
COD	~1000 mg COD/L
Total Nitrogen	39 mg/L
TOC	625 mg/L
	COD COD COD Total Nitrogen

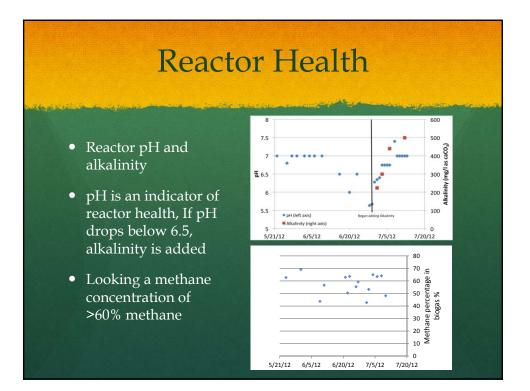


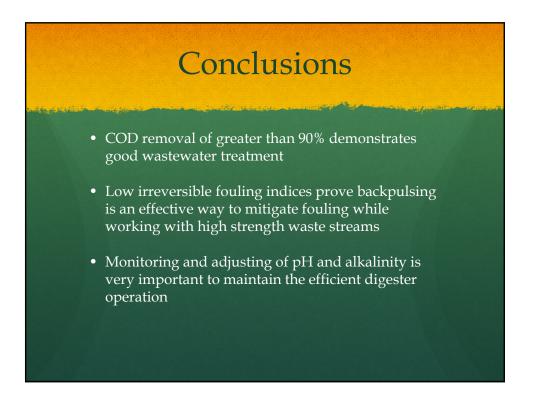
Measured Parameters

• Water quality analysis

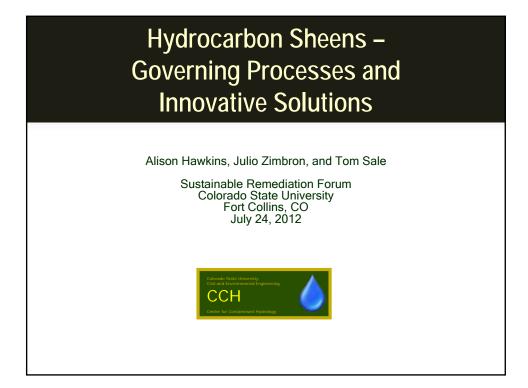

- COD
- TOC
- TN
- Ammonia
- Turbidity


- •Biogas production
 - Monitored daily for content and volume
- Digester health
 - pH
 - Alkalinity
 - VFA


Fouling

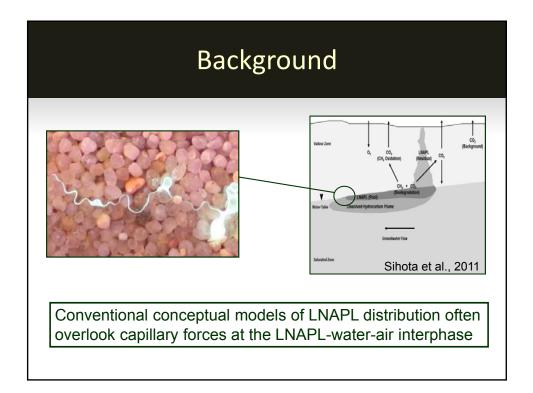

- Needed a way to compare fouling when working with different wastes, CFVs, membranes, etc...
 - Fouling indices can normalize data in order to compare fouling under different operating parameters.
 - Total Fouling Index (TFI) = HRFI+HIFI+CIFI
 - Performed experiments with different waste streams in order to determine the best operating parameters

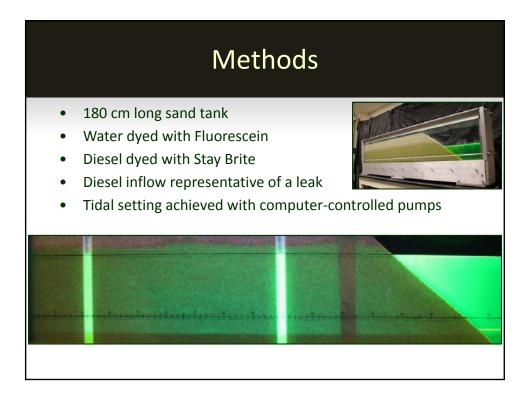
Average water quality values of the feed, digester effluent, and permeateParameterFeedDigester EffluentPermeateCOD (mg/L)1000190070TOC (mg/L)62514027TN (mg/L)393522Ammonia (mg/L)102320Turbidity (NTU)205150015		Water Quality Analysis									
Average water quality values of the feed, digester effluent, and permeateParameterFeedDigester EffluentPermeateCOD (mg/L)1000190070TOC (mg/L)62514027TN (mg/L)393522Ammonia (mg/L)102320		ruter Quanty mary 515									
Parameter Feed Digester Effluent Permeate COD (mg/L) 1000 1900 70 TOC (mg/L) 625 140 27 TN (mg/L) 39 35 22 Ammonia (mg/L) 10 23 20	in de la de	and a suggitter the second									
Parameter Feed Digester Effluent Permeate COD (mg/L) 1000 1900 70 TOC (mg/L) 625 140 27 TN (mg/L) 39 35 22 Ammonia (mg/L) 10 23 20											
COD (mg/L) 1000 1900 70 TOC (mg/L) 625 140 27 TN (mg/L) 39 35 22 Ammonia (mg/L) 10 23 20		Average water quality values of the feed, digester effluent, and permeate									
TOC (mg/L) 625 140 27 TN (mg/L) 39 35 22 Ammonia (mg/L) 10 23 20		Parameter	Feed	Digester Effluent	Permeate						
TN (mg/L) 39 35 22 Ammonia (mg/L) 10 23 20		COD (mg/L)	1000	1900	70						
Ammonia (mg/L) 10 23 20		TOC (mg/L)	625	140	27						
		TN (mg/L)	39	35	22						
Turbidity (NTU) 205 1500 15		Ammonia (mg/L)	10	23	20						
		Turbidity (NTU)	205	1500	15						

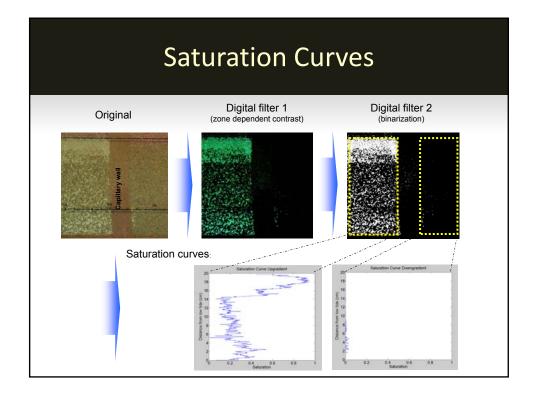


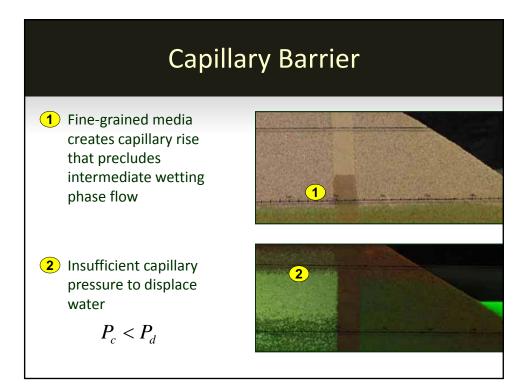
Future Work

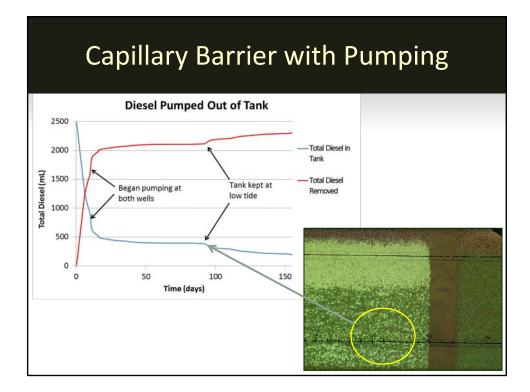
- Finish experiment at 1.5 m/s CFV
- Perform other two CFV experiments
- Optimize HRT for treatment
- Investigate further polishing of permeate with NF and RO membranes.
- Acknowledgments
 - Christopher Bellona
 - Han Gao

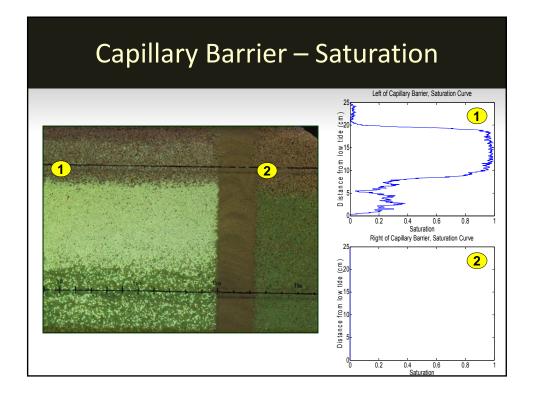

Attachment 9 Hydrocarbon Sheens: Governing Processes and Innovative Solutions

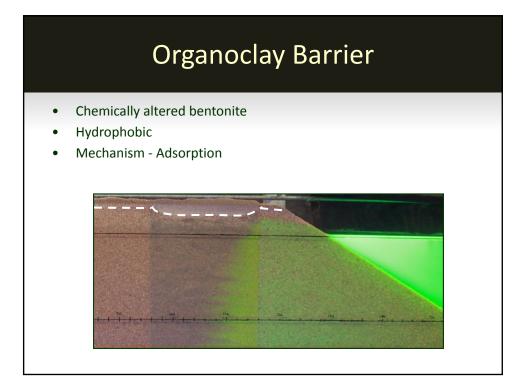


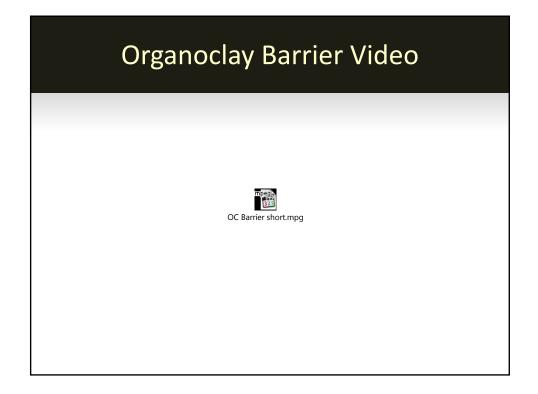


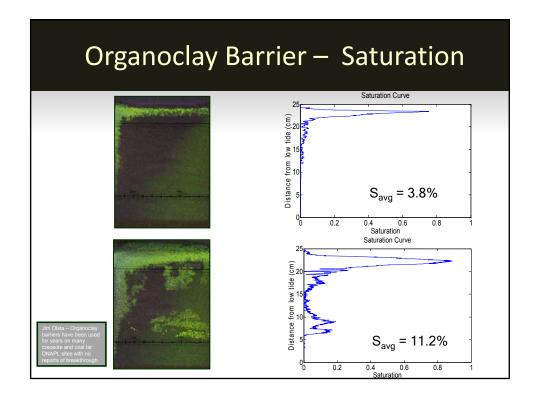


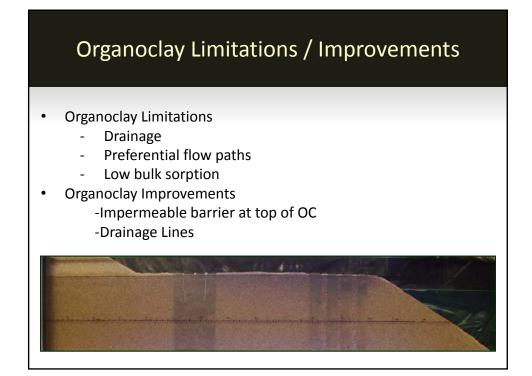


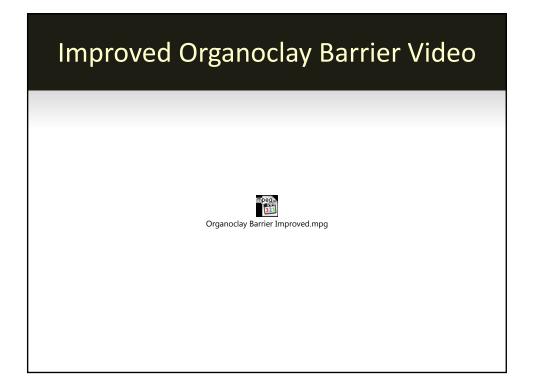


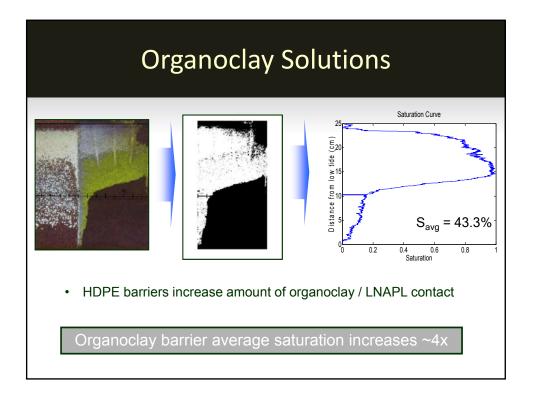


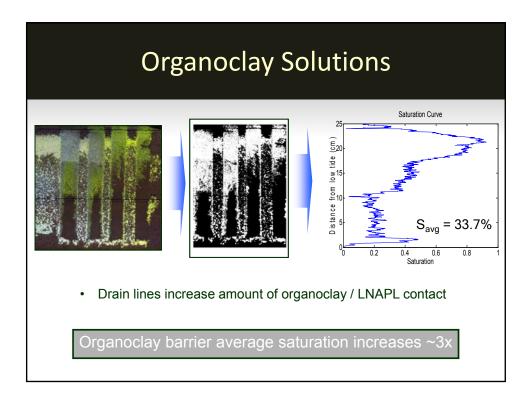


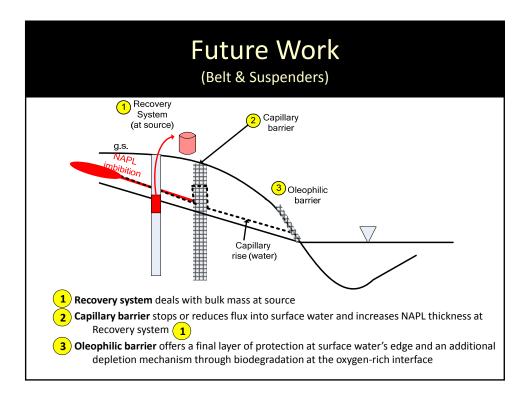


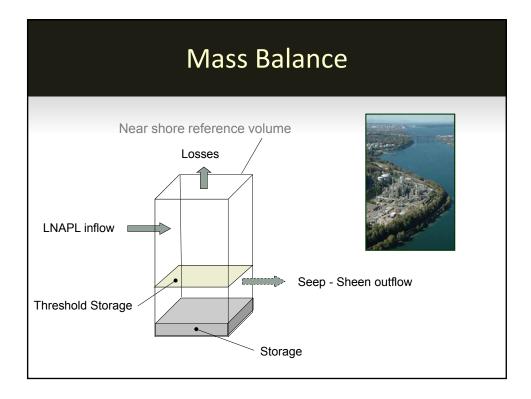


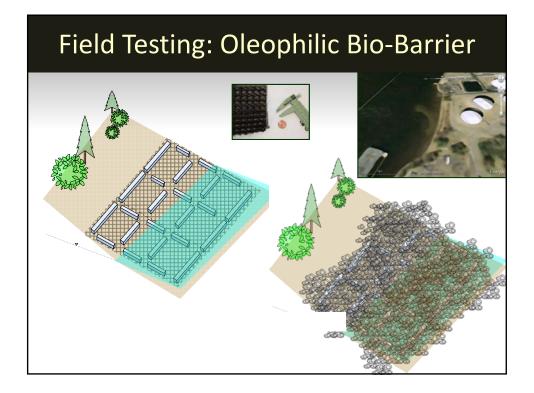


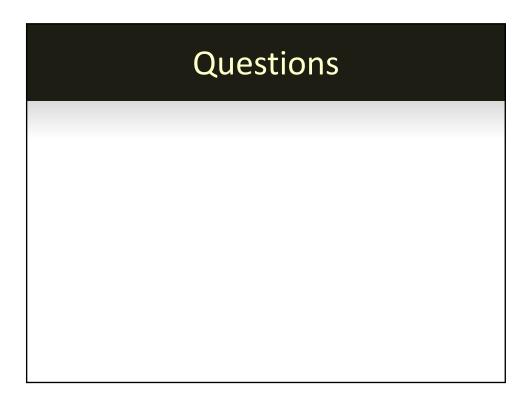


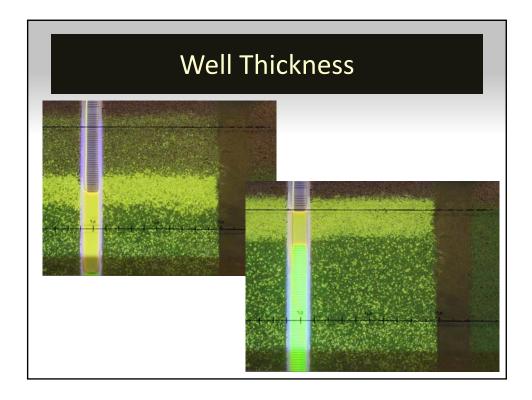


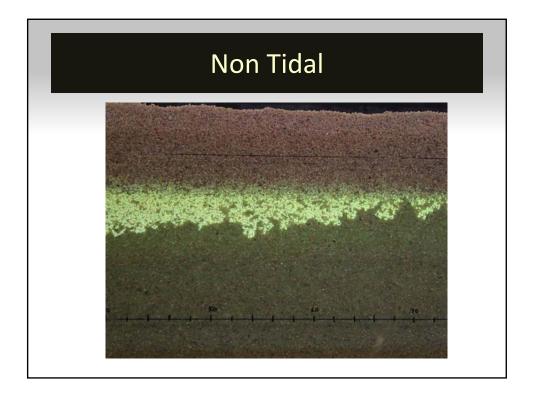










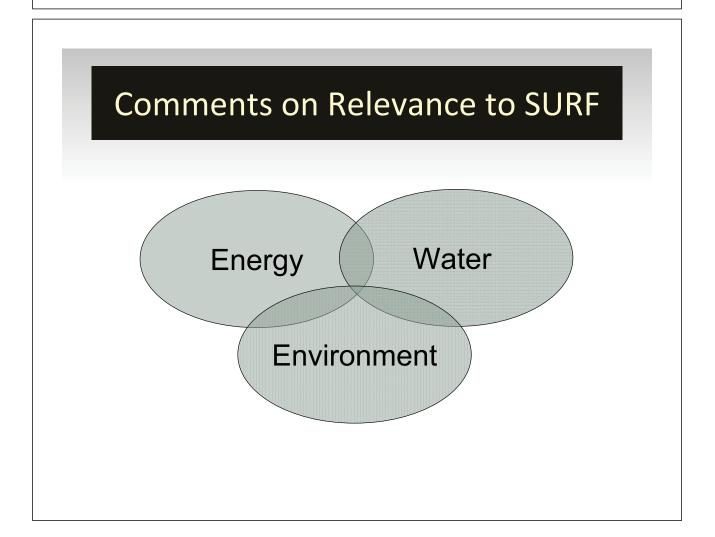

Acknowledgements

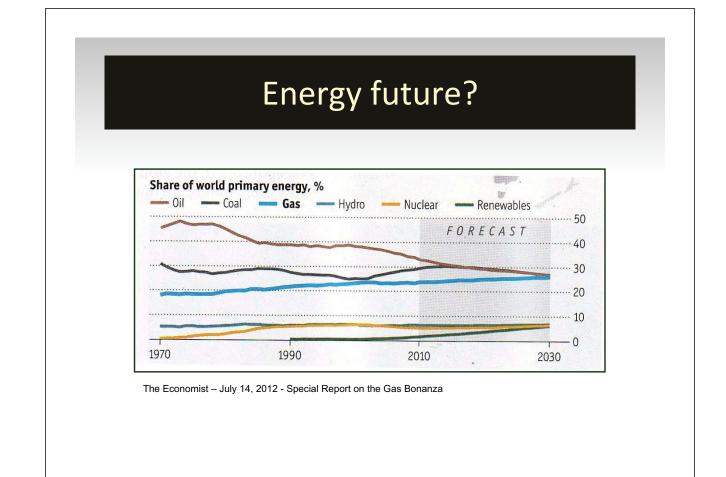
- Chevron
 - Mark Lyverse
 - Pat Hughes
- Fellow students and co-workers
 - Gary Dick
 - Anna Skinner
 - Adam Byrne
 - Tim Smith

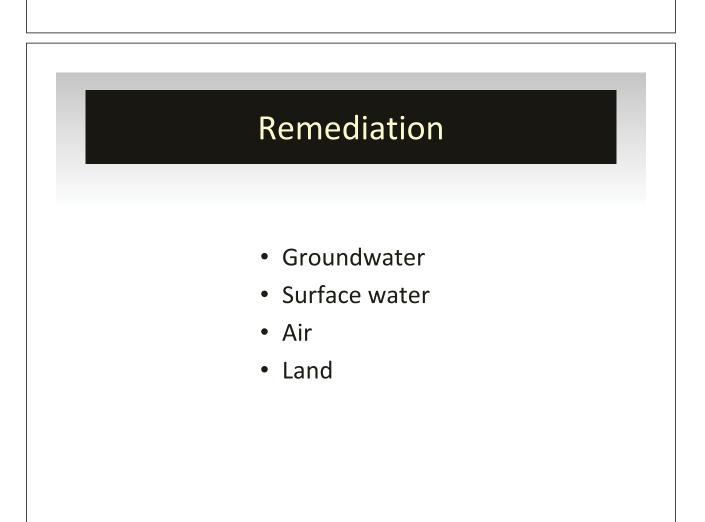
Attachment 10 Comments on Relevance to SURF Resurgence of Oil and Gas Development Implications for Sustainable Remediation

SURF 20,

Wednesday July, 25, 2012


Resurgence

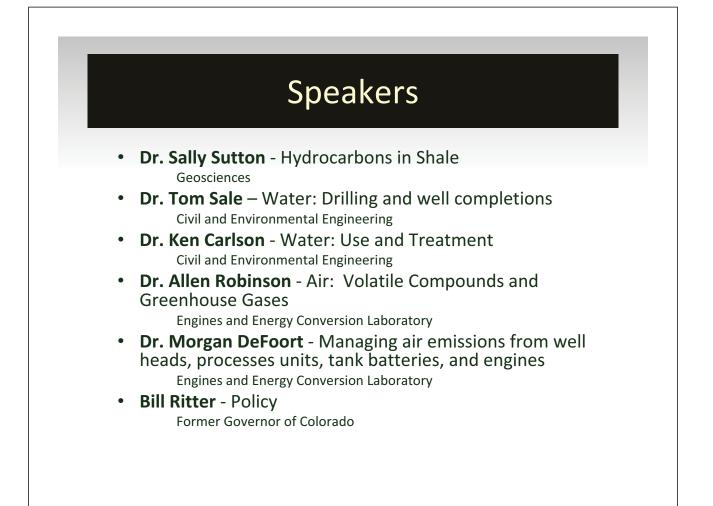



investor.shareholder.com/bhi/rig_counts/rc_index.cfm

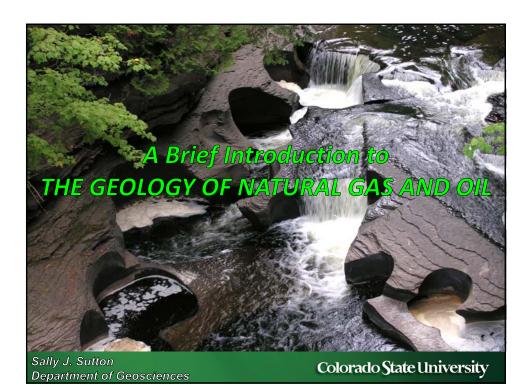
A revolution driven by

- Fast drilling methods
- New completion techniques
- Energy prices
- Recognition of a vast resource
- Licence to operate

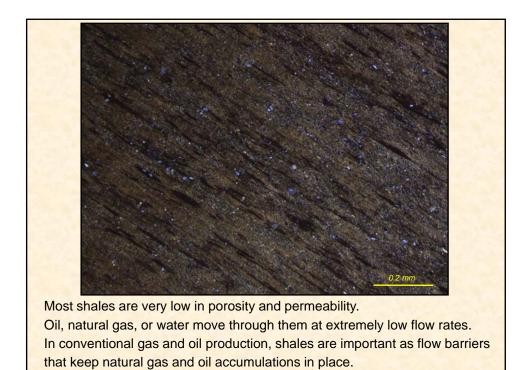
Prevention

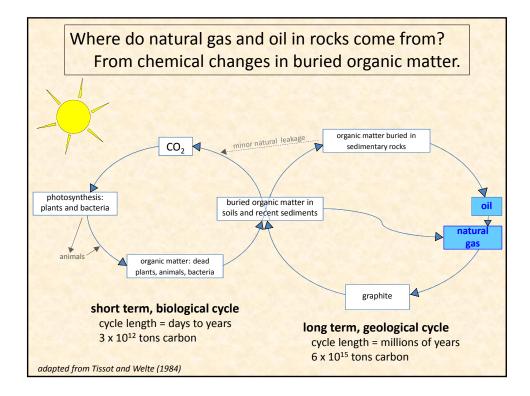


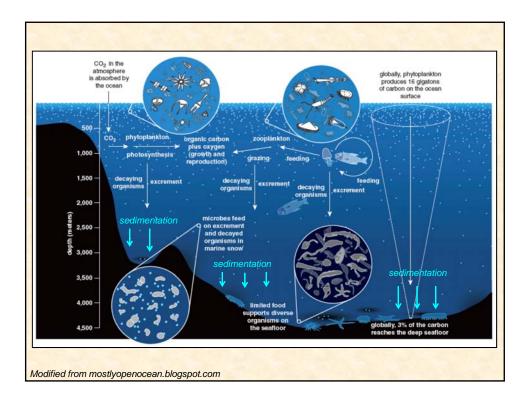
Rewards

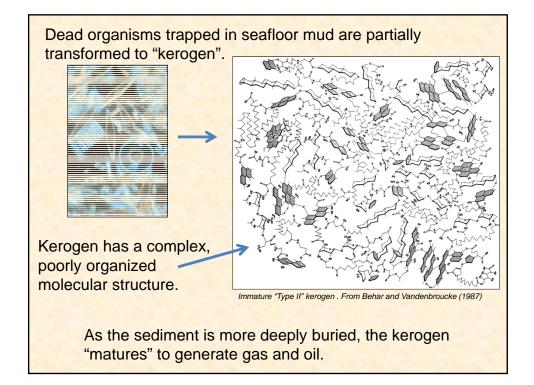

- High paying jobs
- Afforable fuels
- Improved trade balances
- Tax revenue for communities
- Energy security
- Natural gas as a bridge enabling renewable energy
- New technology that can be exported to the world

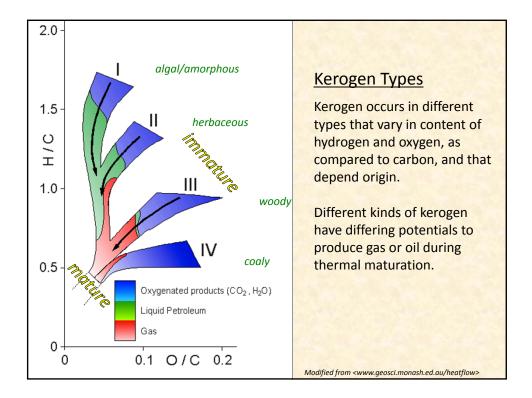
Doing Energy Right

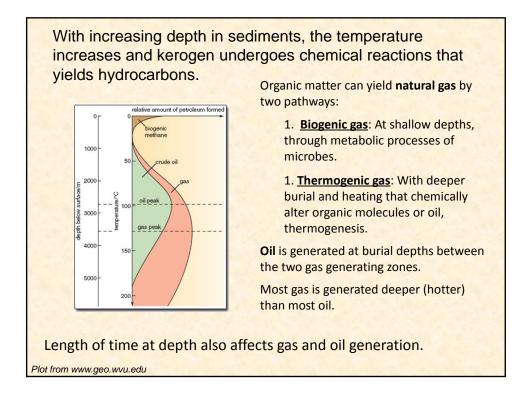


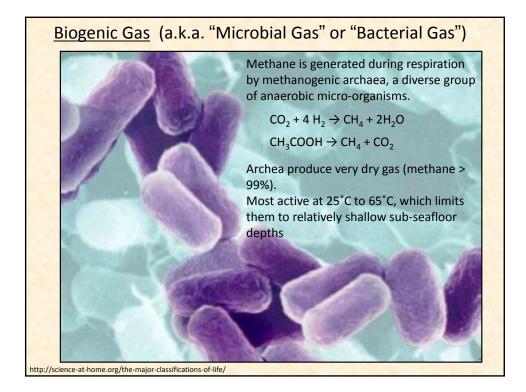

Attachment 11 Brief Introduction to the Geology of Natural Gas and Oil

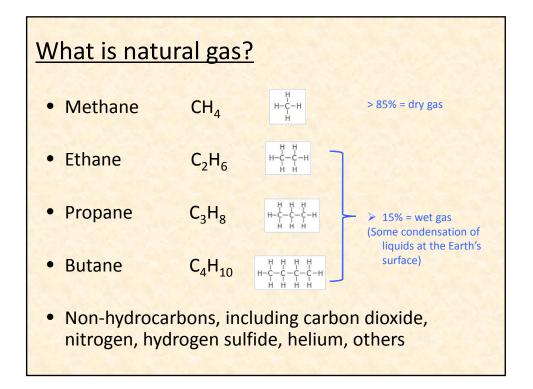


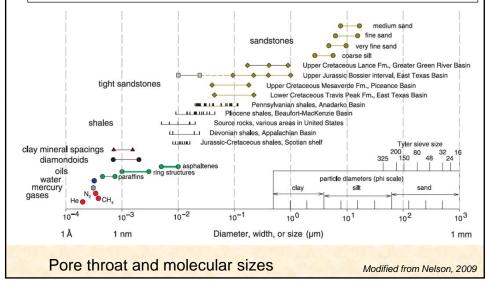


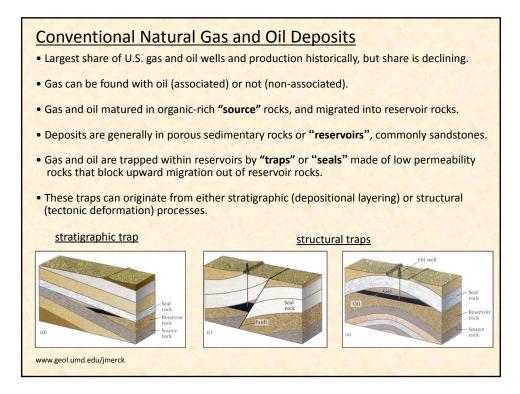

The recent surge in gas and oil development in the U.S. is in extraction from fine-grained rocks, "Shales" or "mudrocks". These are fine-grained sedimentary rocks made from solidified mud. Here we use the term "shale" loosely to include most rocks solidified from fine-grained mud.

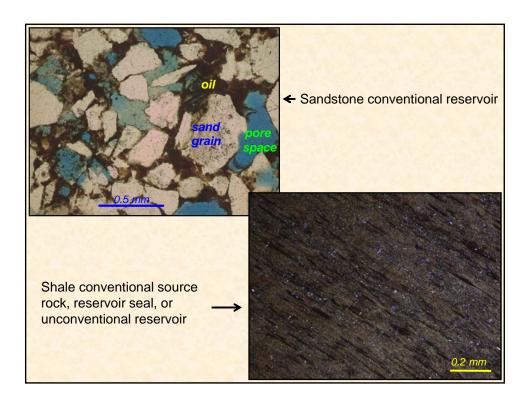


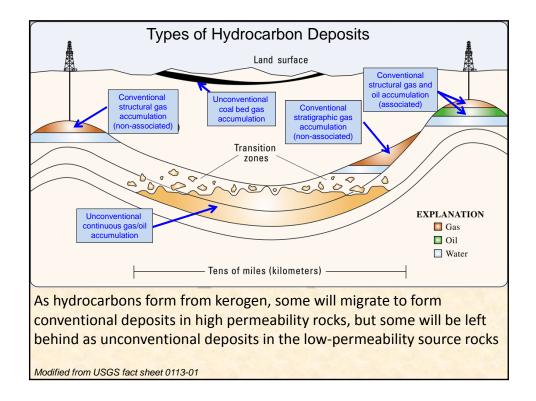






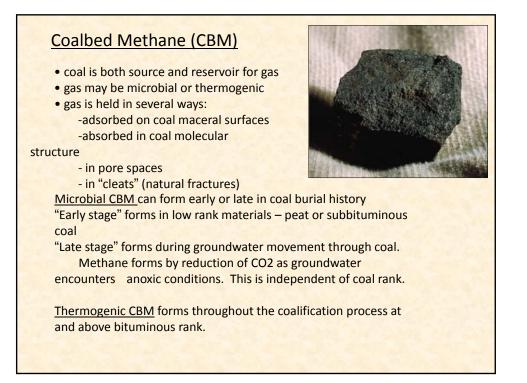


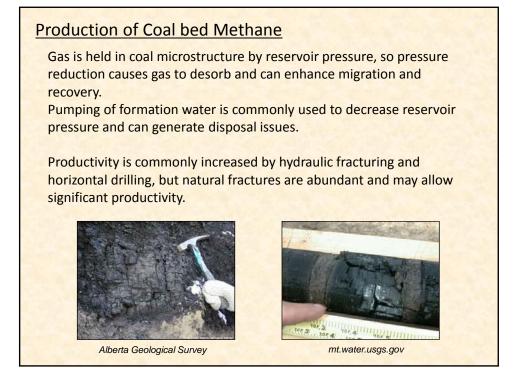


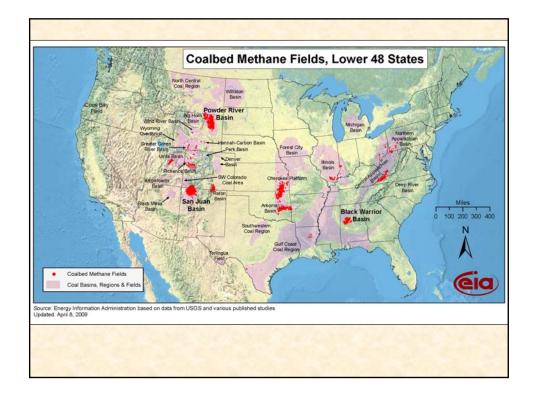


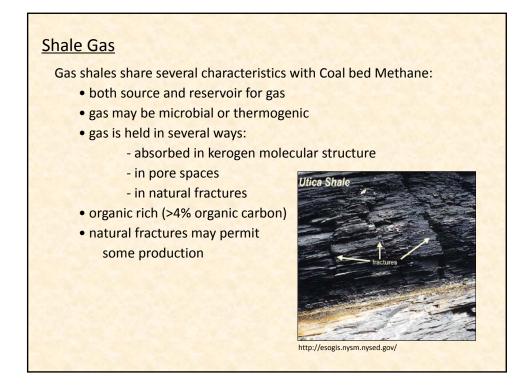
To form conventional deposits, natural gas and oil migrate through connected pores and fractures and then accumulate in coarse grained rocks with large pores.

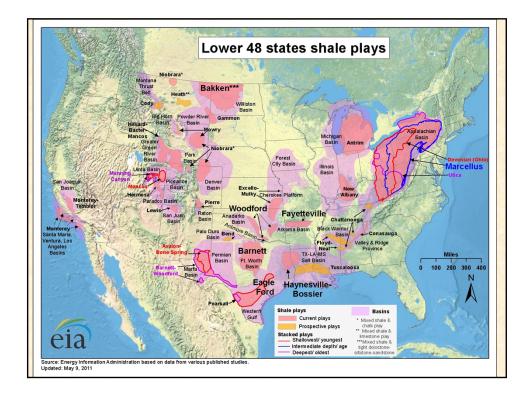
Unconventional Natural Gas

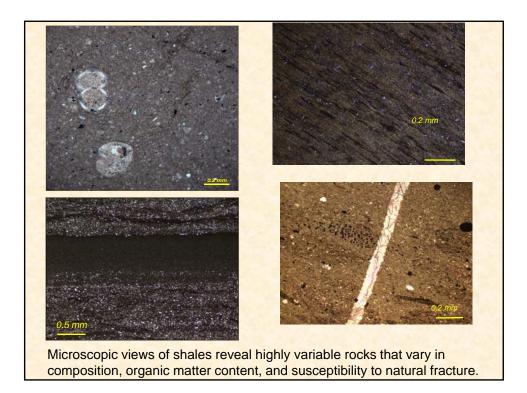

- Coalbed methane (CBM)
- Shale gas (recent explosion in exploration and production activity)
- Tight gas sands (important large fields)
- (Gas hydrates not currently produced)

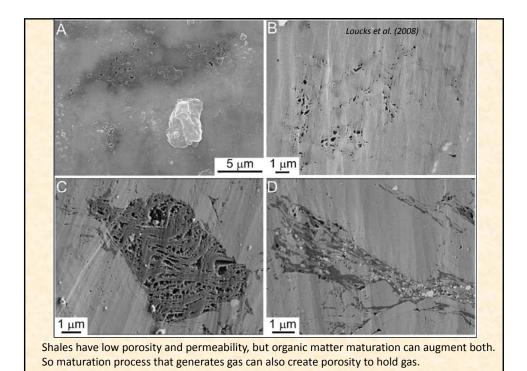

These deposit types are referred to as "continuous" gas accumulations because they are

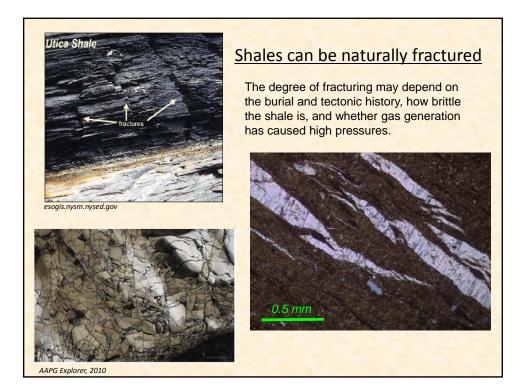

- usually regionally extensive

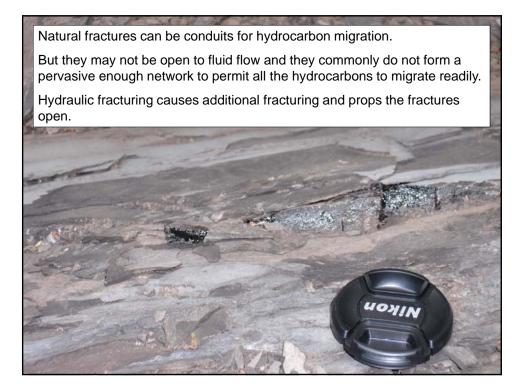

- independent of structural or stratigraphic traps

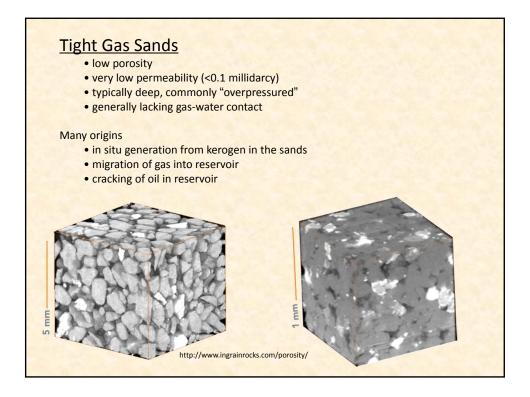

These deposits are easy to find, but generally require "stimulation" to achieve economic production, so are expensive to produce.

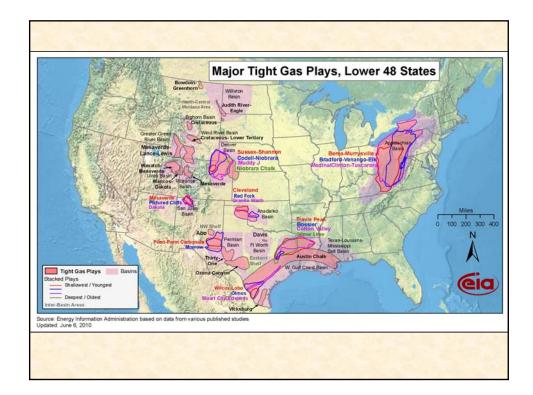


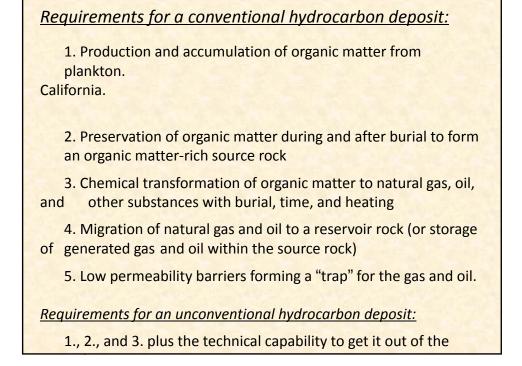


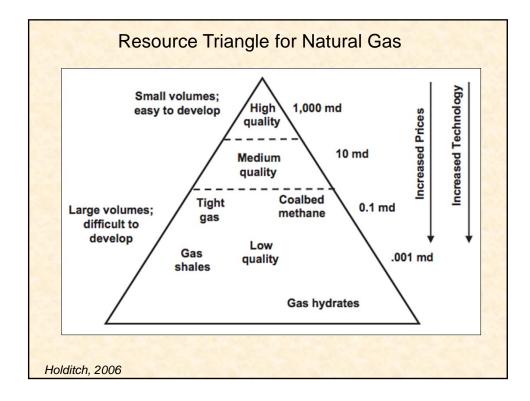


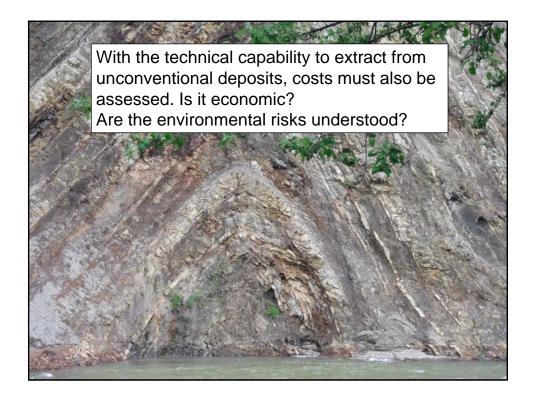


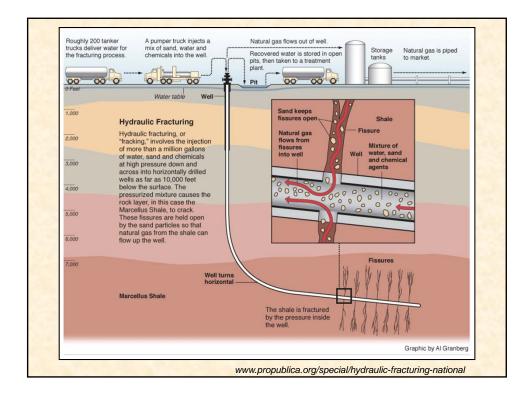


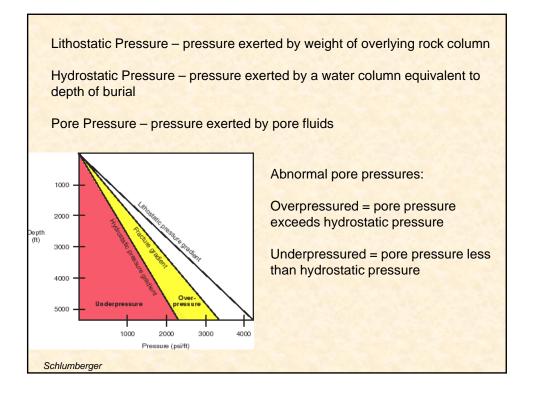


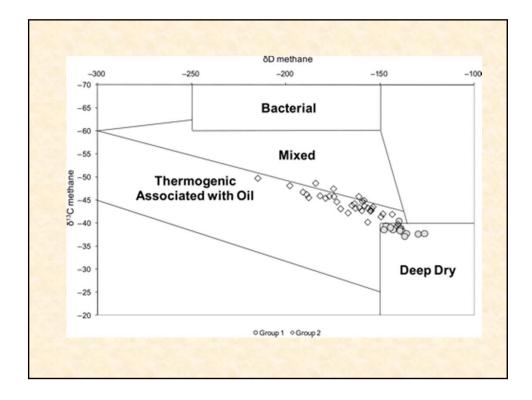


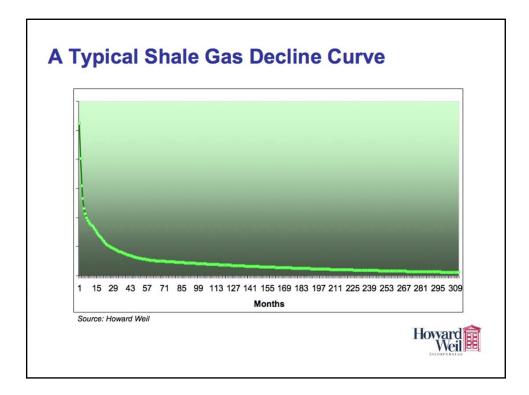






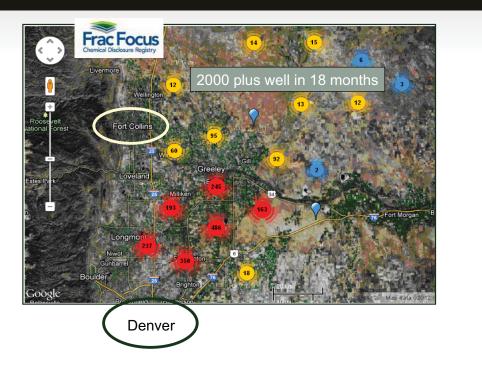


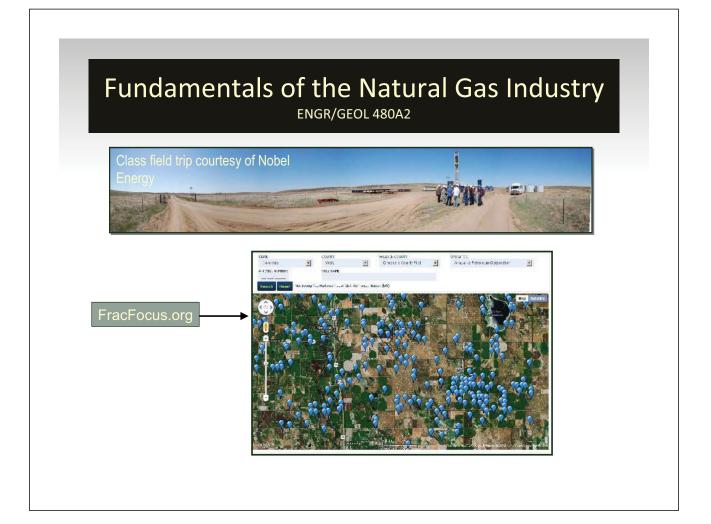




Attachment 12 Environmental Implications of Drilling and Completion

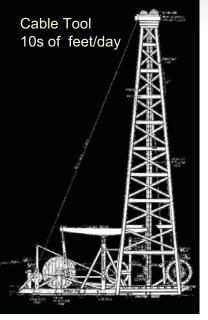
Drilling and Completion (oil and gas)


Dr. Tom Sale Colorado State University


SURF 20 Fort Collins, Colorado July 25, 2012

Groundwater

Niobrara Formation



Topics

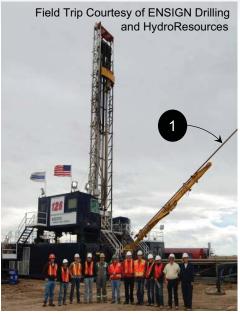
- Drilling
- Well Completions

Process

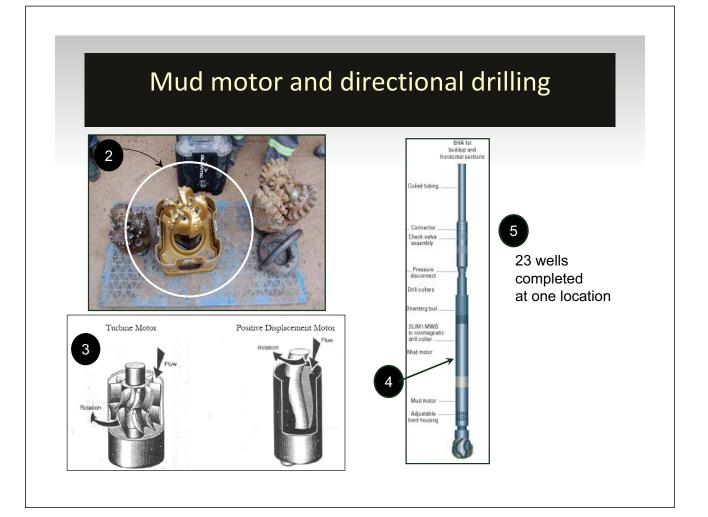
- Drilling
 - Break formation
 - Remove cuttings
 - Hold the hole open
 - Prevent blow out

1850s

Balakhani oil field in Azerbaijan 1890s

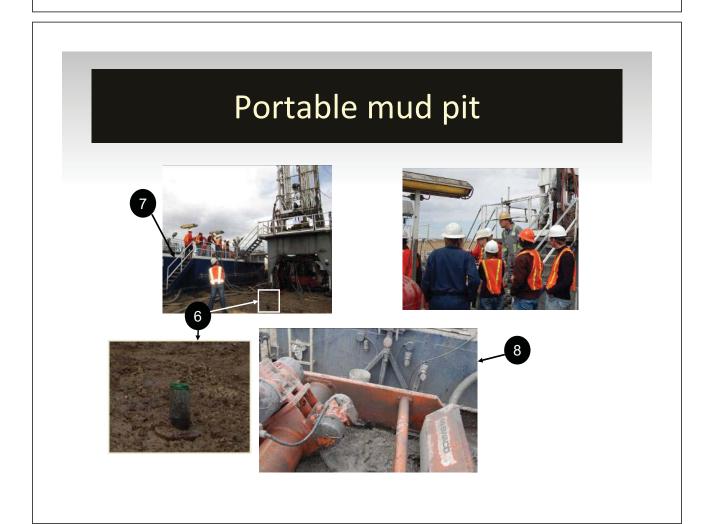


http://www.sjvgeology.org/history/baku.html



Mud rotary with down hole mud motor

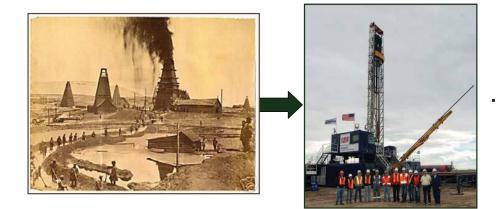
1000s feet/day



2011 Class Field Trip

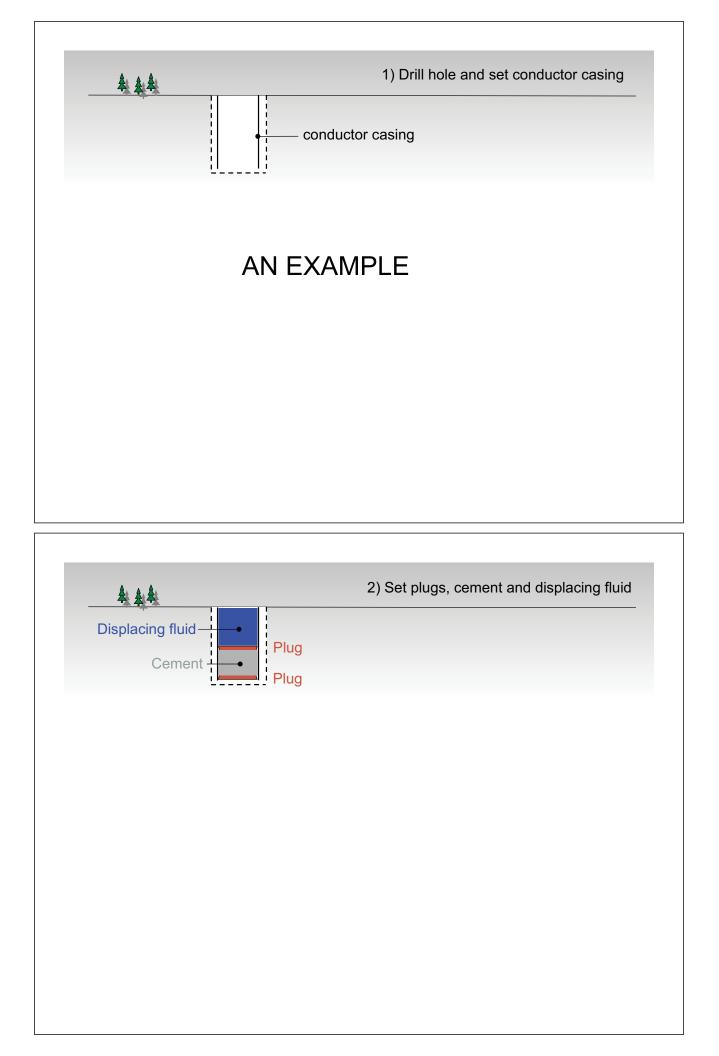
Multiple wells at a single location

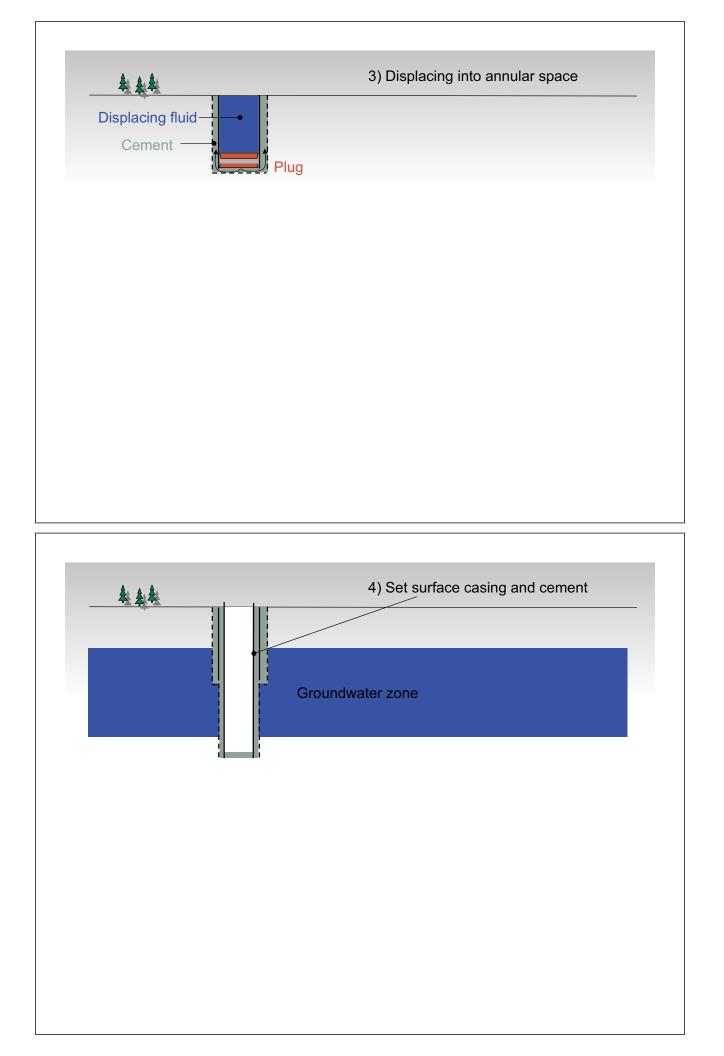
Mud engineer

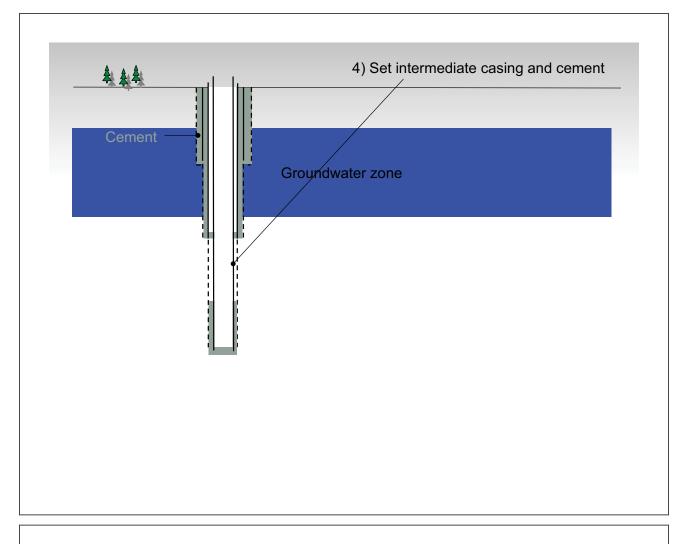

HydroResources, Fort Lupton, Colorado

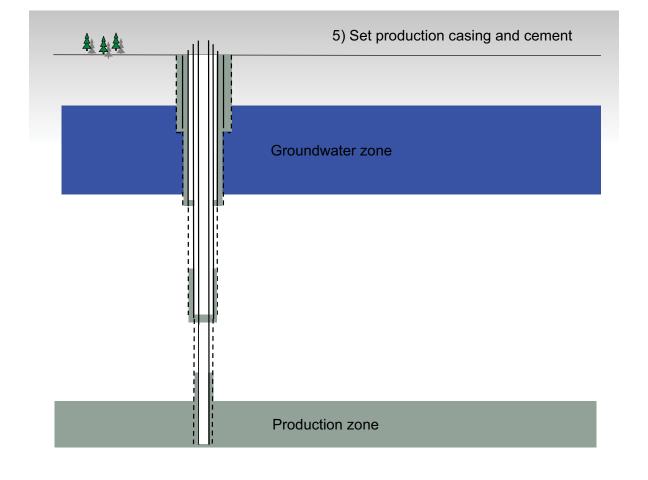
- □ Viscosity to carry the cutting out of the hole
- Weight to hold the hole open
- Weight to prevent blow out
- Lubrication
- Solids to limit fluid losses

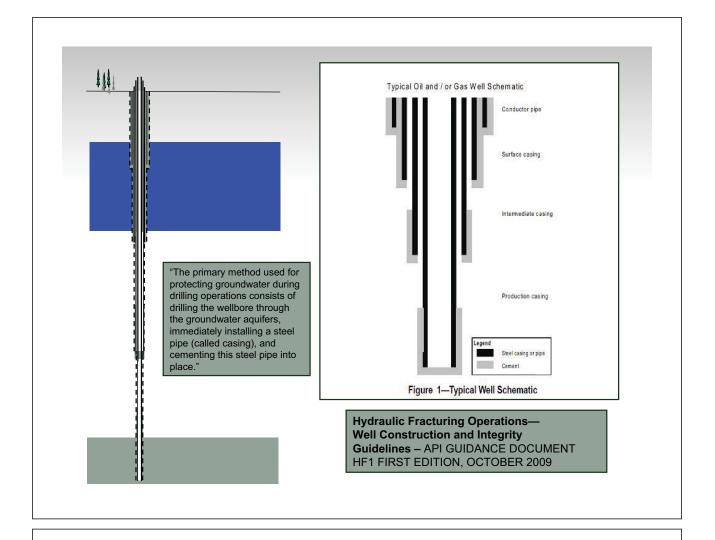
Blow out preventer

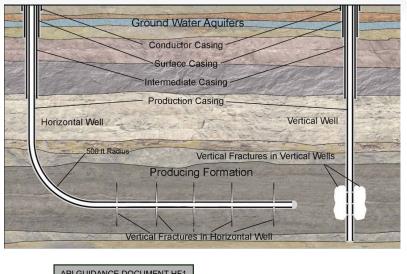


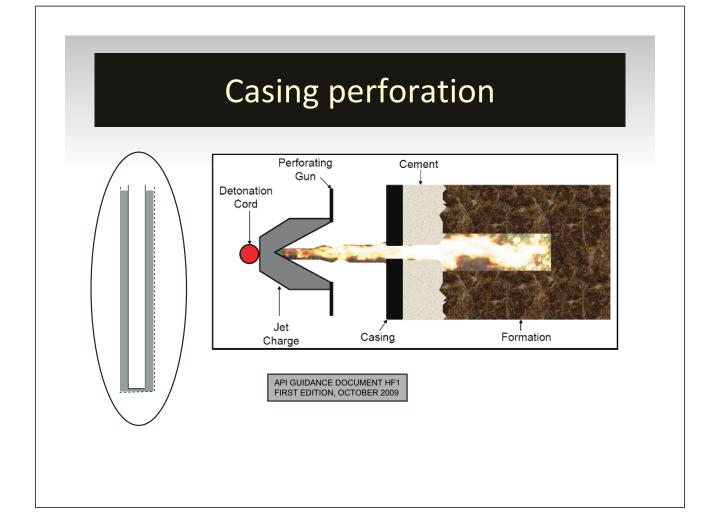

Then, now, and ... tomorrow



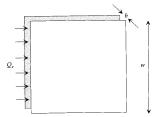

Well Completions

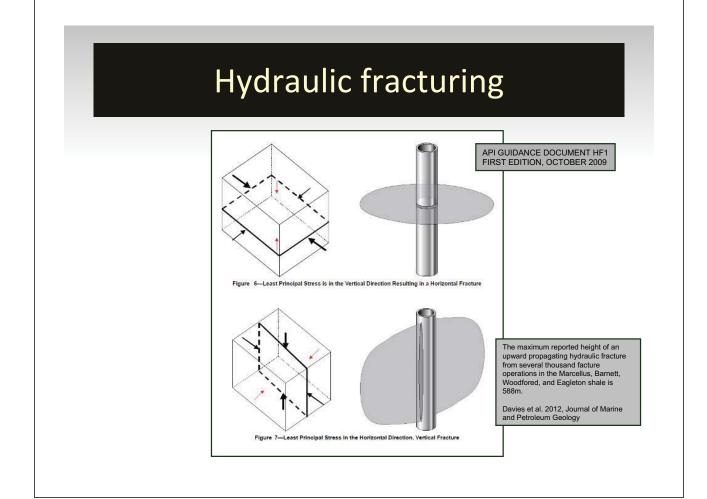

- Set casing and cement
- Perforate casing
- Stimulate Formation (Hydraulic Fracturing)

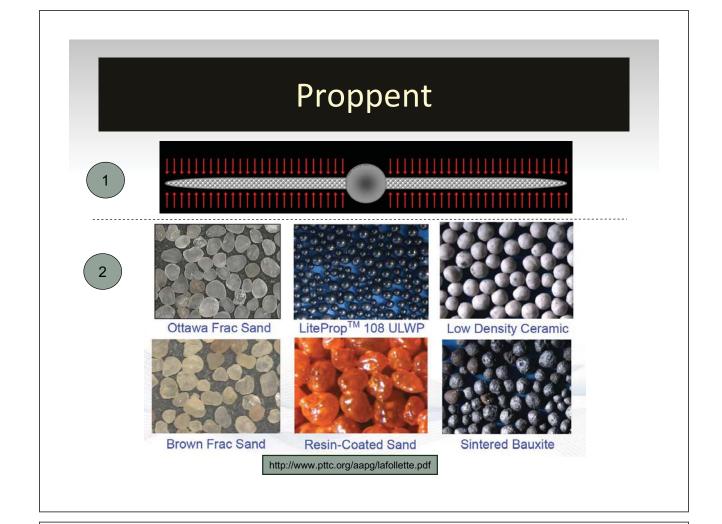




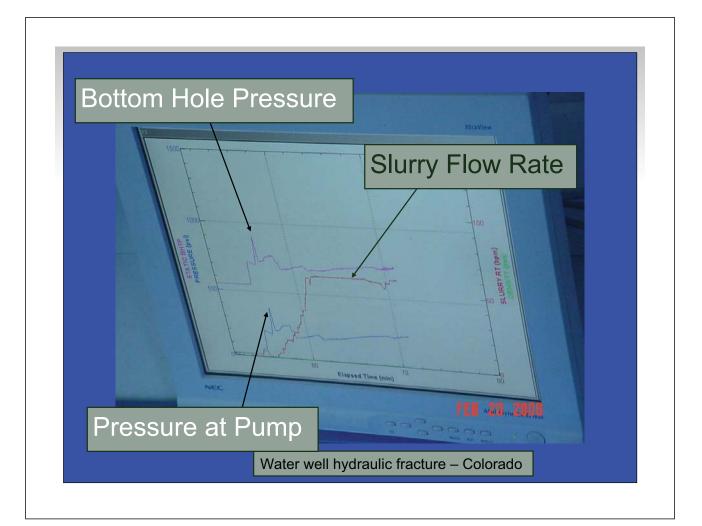
API GUIDANCE DOCUMENT HF1 FIRST EDITION, OCTOBER 2009

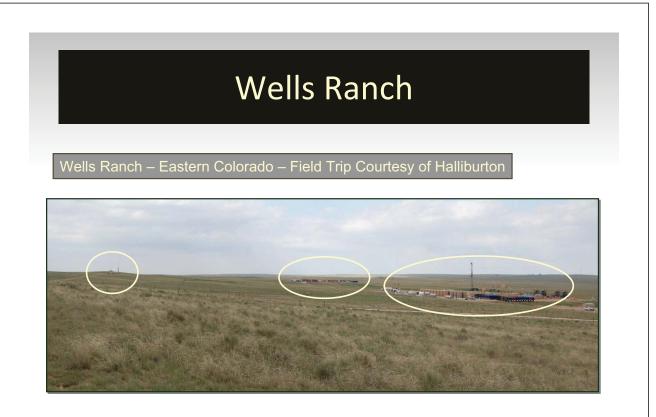

Construction Construction <th< th=""><th>alifo</th><th>rn</th><th>ia</th><th>STATE OF CALIFORNIA DEPARTMENT OF CONSEI DIVISION OF OIL, GAS, & C</th><th>GEOTHERMAL</th><th></th><th>es AK GAS FIELD</th><th>RULE</th><th>NO.: 607-079</th></th<>	alifo	rn	ia	STATE OF CALIFORNIA DEPARTMENT OF CONSEI DIVISION OF OIL, GAS, & C	GEOTHERMAL		es AK GAS FIELD	RULE	NO.: 607-079			
Control (Control Control Contrel Contro Control Contend Control Control Control Control Control												
CASING PROGRAM CASING P	01 13								1113/ 50, 2007			
Casing String Cementing Depth Annular Cement Fill Division of out, case is Generating Depth Cementing Depth Annular Cement Fill Division of out, case is Generating Depth Division of the case is Division of Division Division of Division of Division Division of Division D				CASING PROGRAM								
Constraint Constra	(And a second s		Constant of the second	a first store in the second store in the second store in the second store in the second store is the second store in the second store is the second store in the second store is the secon			menting Depth		Annular Cement Fill			
NUMBER OF OF LID GAS & REPORTENDAL REPORT Discass & Geothermal - Ptr Also Accoss Frances Discass & Geothermal - Ptr Also Acco	Home Information Online	Data For Operate	n Education Injection	and the second sec								
Answall Registre Oil: Gas & Geothermal - Pril General Registre Actions 2 Acres 16 SUP above 2 once. Actions 2 Acres 16 SUP above 2 once. Actions 2 Acres 16 SUP above 2 once. Actions 2 Acres 16 SUP above 2 once. Actions 2 Acres 16 SUP above 2 once. Actions 2 Acres 16 SUP above 2 once. Super 14 Reparts Actions 2 Acres 16 SUP above 2 once. Actions 2 Acres 16 SUP above 2 once. Actions 2 Acres 16 SUP above 2 once. Super 14 Reparts Actions 2 Acres 16 SUP above 2 once. Super 14 Reparts Actions 2 Acres 16 SUP above 2 once. Super 14 Reparts Actions 2 Acres 16 SUP above 2 once. Super 14 Reparts Actions 2 Acres 16 SUP above 2 once. Super 14 Reparts Actions 2 Acres 16 SUP above 2 once. Super 14 Reparts Actions 2 Acres 16 SUP above 2 once. Super 14 Reparts Actions 2 Acres 16 SUP above 2 once. Super 14 Reparts Actions 2 Acres 16 SUP above 2 once. Super 14 Reparts Actions 2 Acres 16 SUP above 2 once. Super 14 Reparts Actions 2 Acres 16 SUP above 2 once. Super 14 Reparts Action 2 Acres 16 SUP above 2 once. Super 14 Reparts Action 2 Acres 16 Super 14 Reparts Super 14 Reparts Action 2	IVISION OF OIL, GAS &		State	Surface.	proposed TD :	and can be	bed.	npetent T	o surrace			
Comparison Register Substance Regist	Annual Reports General Information	Oil, Gas & Adobe Acrobiat R	contractive and an and a strategy of the	Production	Productive zo	ne	Traditional or Barefoot compl	A B	ilso across BFW and 100' abo FW, if BFW is below Surface			
PORCING Contring DOCIDE Contrel DOCIDE Contring DOCIDE Contring DOCIDE Contring D	Open File Reports Statistics & Production Technical Reports	Publication and an		Intermediate				casing A 722.4 A B	Across Zone to 500' above zone. Also across BFW and 100' above BFW, if BFW is below Surface			
CHICK HTS Were hit for ancies or pressure function Site Preve based Checking Site for an open state in Calculation Site Preve based Checking Site in Calculation Site Preve based Checking Site in Calculation	Ontering DOGGR	Charles and the second second	AB1950 Information		5		1	C	asing.			
Control that Size Revert Contrevert Control that Size Revert Control that Size Revert		ERC05	were held to receive con Field Rules Pursuant to California C		ition TR10 Cali	fornia Oil an	d Gas Fields, Northern Califor	nia. Well o	lata from 51 wells drilled.			
Obsamol Contexts Forme			describe subsurface cos	BLOWOUT PREVENTION E	EQUIPMENT P	ROGRAM (Referenced from MO7)					
		No number Application for Prima			Surface DOGGR Cla Pressure				equirements			
Onter Magnes Stretm Contro Magnes Contro Contro Magnes Contro Contro Magnes Contro				Drilling below surface casing		III B 2-5M	N	one				
State statem PECC Collision PECC Collision District State and the state of the	Online Mapping System	PRC01 Free			and the second se		(i)					
Cuta Wall Received Such and Received Such and Received Such and Received Such and Received Received Continuence Received Contentervise Received Continuence Received Continuence Rec	and Injection											
Procession of the state of	Search	ERC04	California Code of Re	BASE OF FRESH WATERS								
Free We downlaw to be the control of t		Natice to Operators	Statewide Genthermal F Notices to Operators			e	Comments:					
OLSEI Sam Jacquin Valuy Color to the result of a long production history, and a history of successful water shurdfits, testing and approval of water shurdfits by Color to the result of a long production history, and a history of successful water shurdfits, testing and approval of water shurdfits by Color to the result of a long production history, and a history of successful water shurdfits, testing and approval of water shurdfits by Color to the result of a long production history, and history of successful water shurdfits, testing and approval of water shurdfits by Color to the result of a long production data, and if anomalous water production is indicated, remedial action may be ordered.	T	MOLUMICA		GENERAL COMMENTS	GENERAL COMMENTS							
1916 Leven Laws of the State of Free Enacted in 1915, these	CR. ARE S.	Oil Spill Reporting East Bulle	San Joaquin Valley O This field rule establishe									
			Laws of the State of C Enacted in 1915, these									



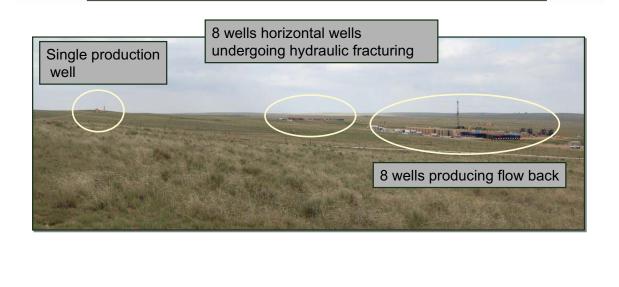

Formation stimulation via hydraulic fracturing

Cubic Law - Laminar flow in a smooth walled fracture (Romm 1966)





Crosslinked Polymer

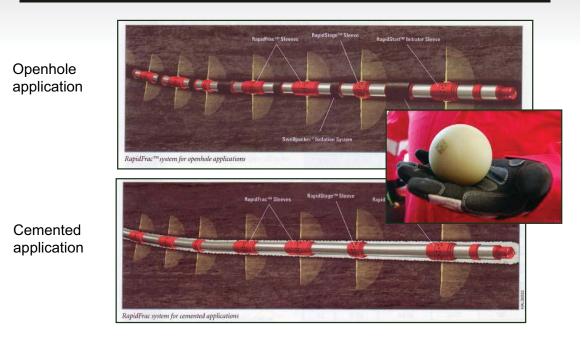


Wells Ranch

Wells Ranch – Eastern Colorado – Field Trip Courtesy of Halliburton

Stimulation via Hydraulic Fracturing

Injection of water, sand, and additives.



Numbers

- 1900 gallons/min
- 18,000 horsepower

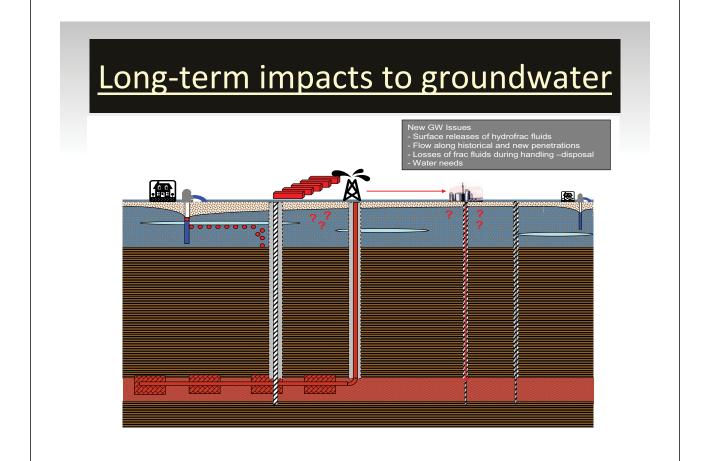
Evolving practice

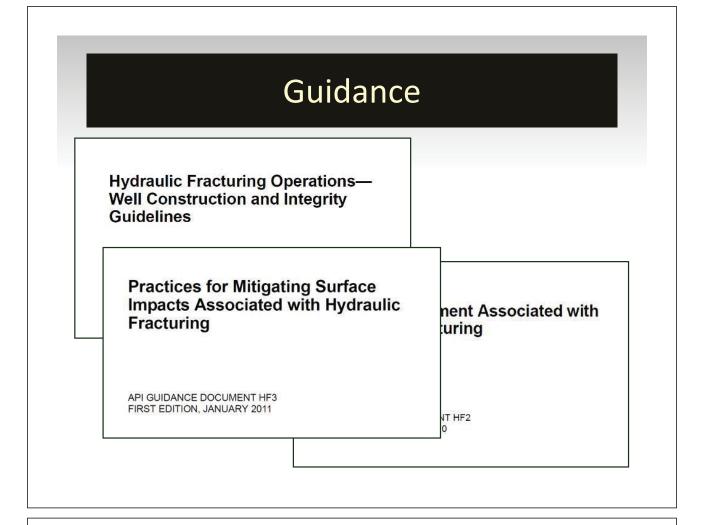
Dropping the ball

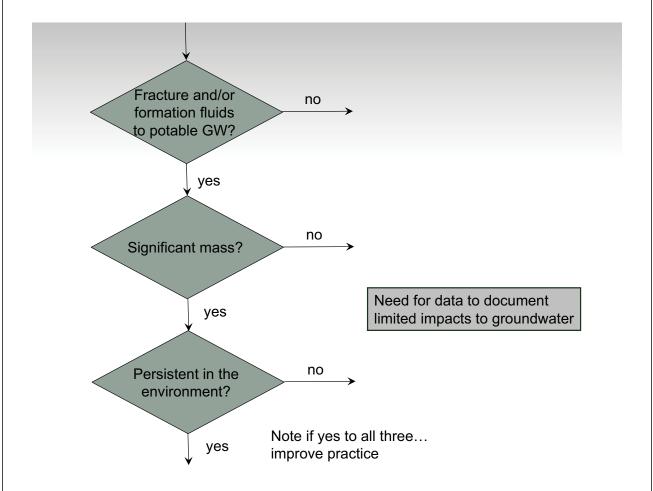
Additives

- Water
- Sand
- Gel
- Biocide
- Corrosion inhibitor
- Acid
- Breakers
- Lubricant

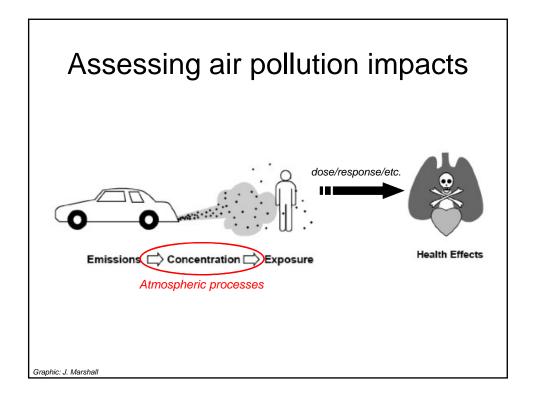
Closing thoughts


Concerns


- Green house gases
- Local air quality
- <u>Long-term impacts to</u> <u>groundwater</u>
- Management of produced water,
- Competion for finite water resources,
- Disruption of communities.



Attachment 13 Air Pollutant Emissions from Shale Gas Development and Production

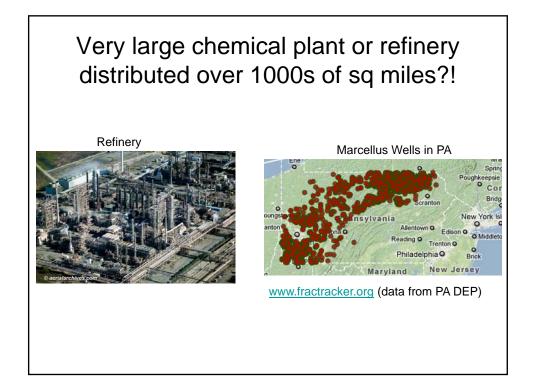

Air pollutant emissions from shale gas development and production

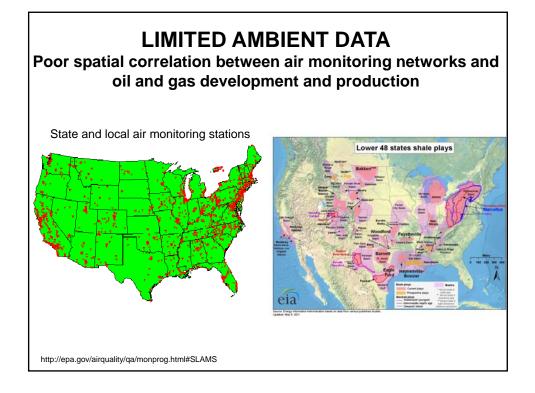
Allen L. Robinson

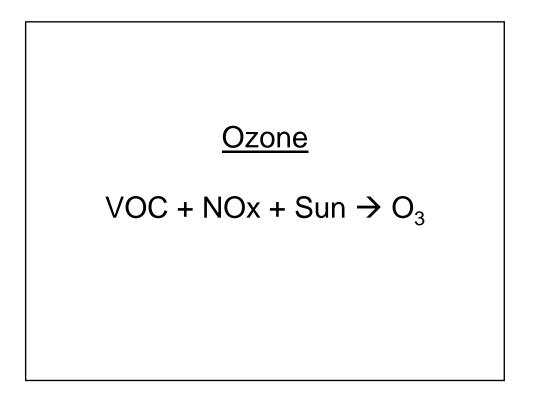
Department Atmospheric Science Department of Mechanical Engineering Colorado State University Fort Collins, CO

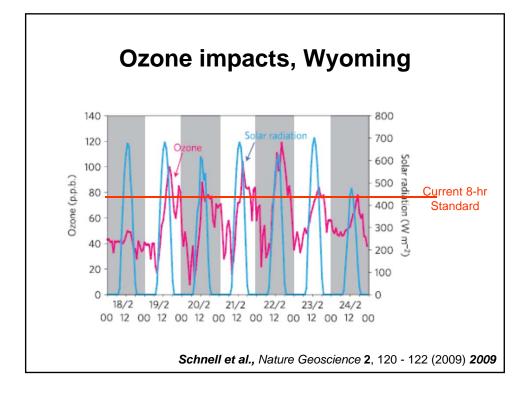
Potential Air Quality Concerns

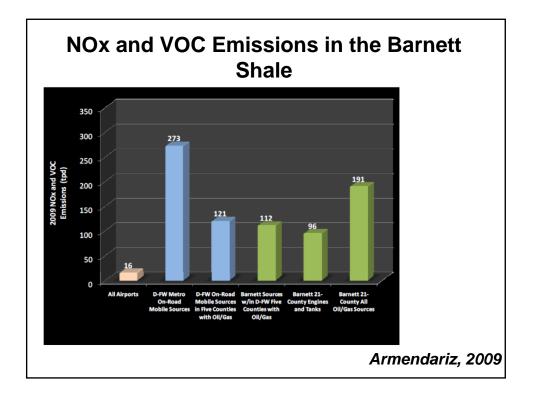
- Criteria Pollutants
 - O_3 (VOC + NOx + sunlight)
 - $-NO_2$
 - PM_{2.5}
- Hazardous Air Pollutants / Air toxics
 - Diesel particulate matter
 - Formadehyde
 - Benzene, toluene, ethylbenzene, xylenes
- Climate
 - CH_4
 - Black carbon

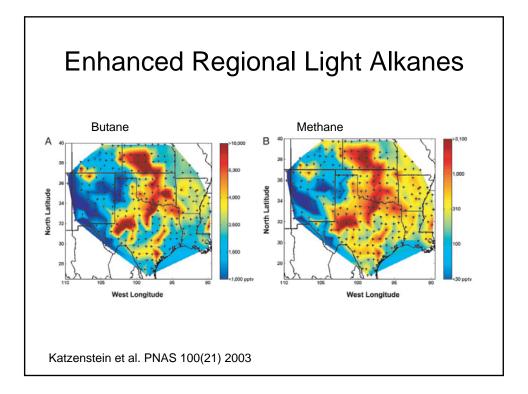


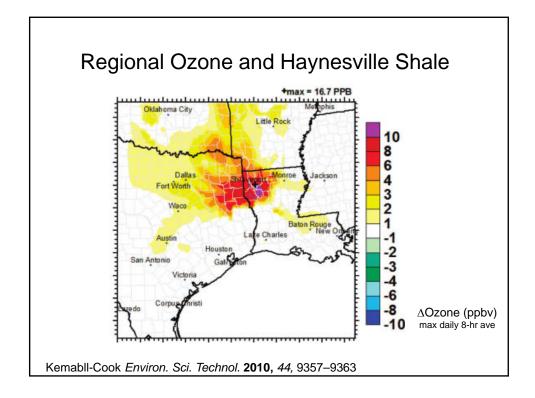


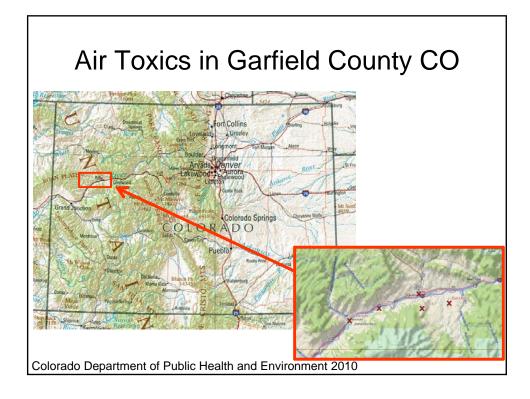

Source	NOx	VOC	PM	Air Toxics	Data Quality
	Well dev	velopment			
Drill Rigs		•			Medium
Frac Pumps		•			Medium
Truck Traffic		•			Medium
Completion Venting					Poor
Frac ponds		•		?	Poor
	Gas Pr	oduction			
Compressor Stations			0		Medium
Wellhead compressors	•	0	0	•	Medium
Heaters and dehydrators		•	0	•	Medium
Blowdown venting		•		0	Poor
Condensate Tanks				•	Poor
Fugitives		?		0	Poor
Pneumatics		0		0	Poor

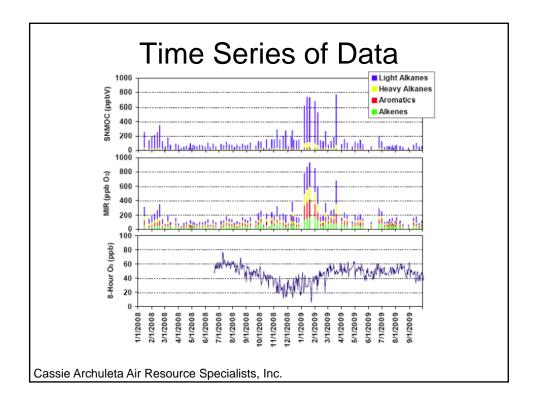


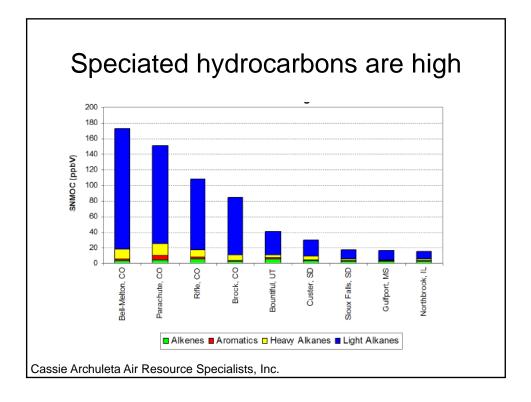


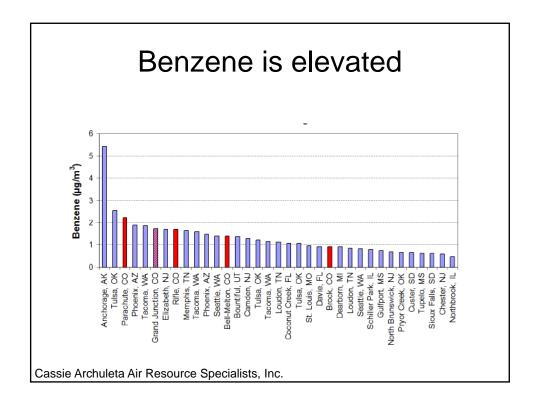


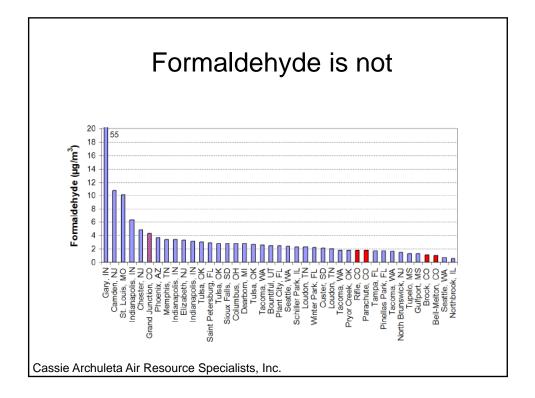

The Jonah–Pinedale Anticline natural gas field in Wyoming.

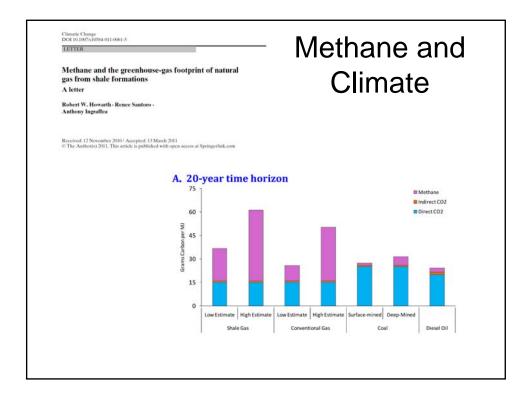


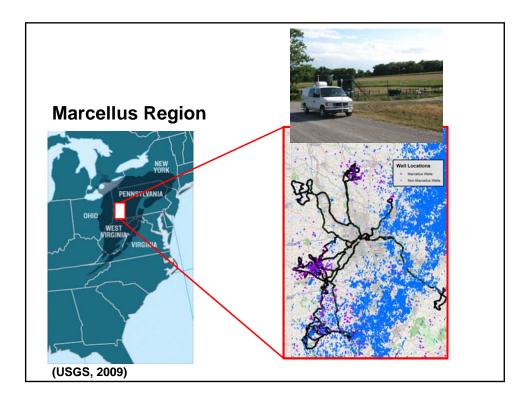


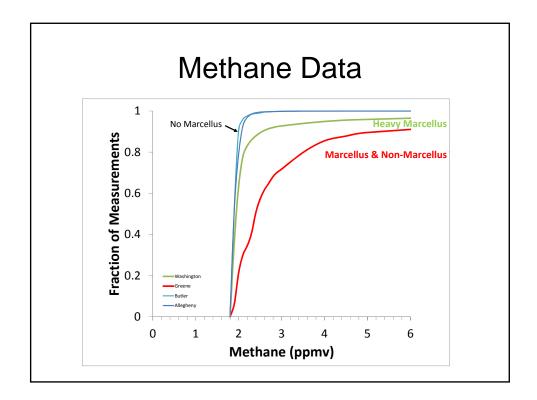




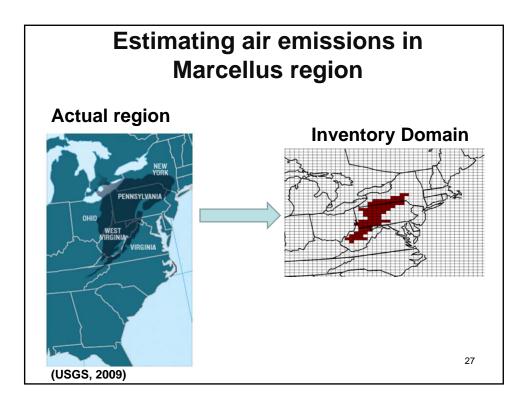


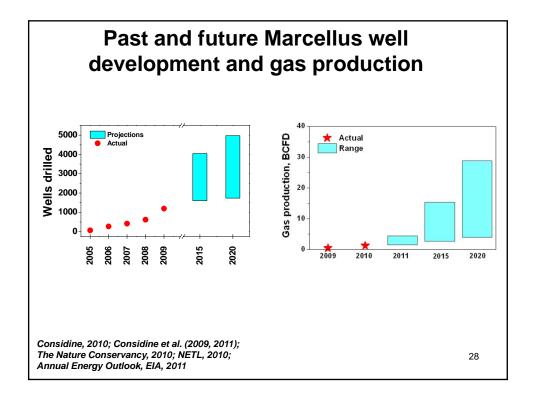


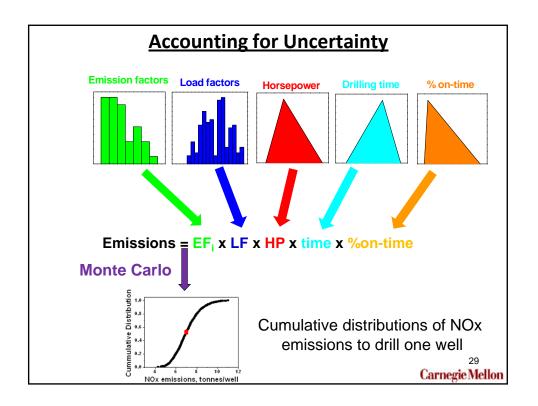


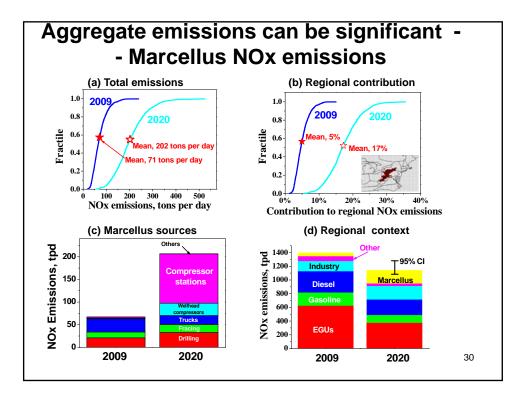


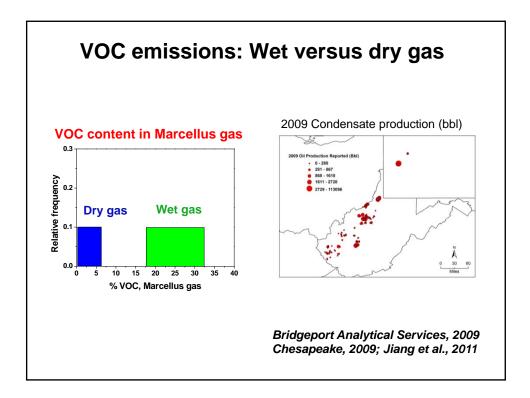
Air quality and oil and gas development

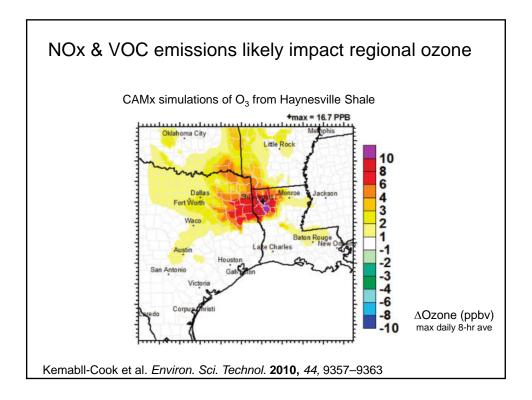

- More than just "fracing" -- Complex mix of "small" sources
- · Widely distributed in space
- Poor coverage by routine monitoring networks
- Aggregate emissions are significant in regional context:
 NOx and VOC (→ regional O₃)
- · Air toxic emission may create local problems
 - Diesel PM and formaldehyde (local air toxics)
- Climate implications uncertain but methane levels in gas fields elevated
- Control measures exist

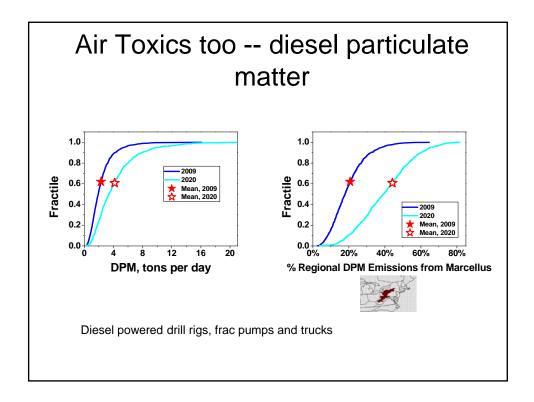

CSU activities in shale gas and air quality

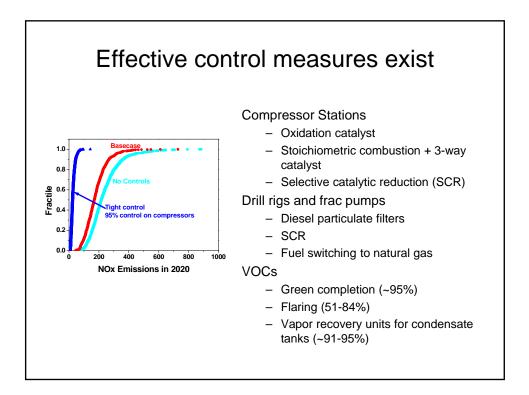

- Garfield County Air Toxics Project (Collett)
- Marcellus Inventory Development and O3 Modeling (Robinson)
- Marcellus Pollutant Mapping (Robinson)

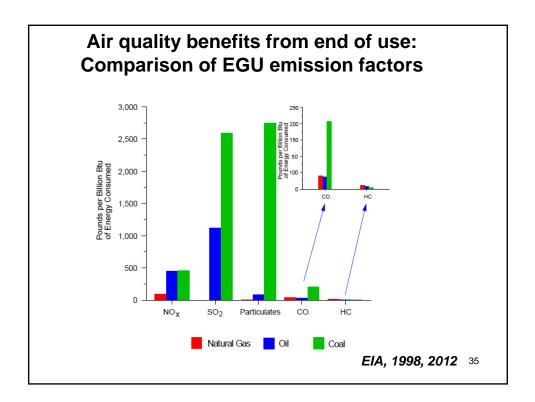

Acknowledgements

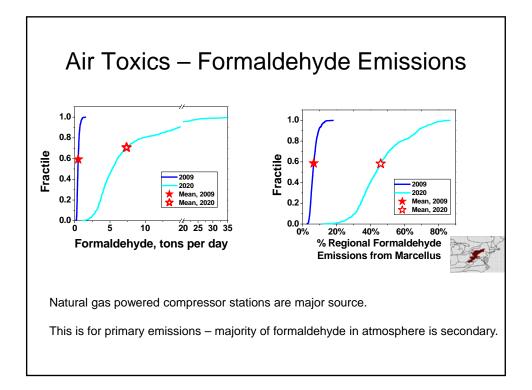

- Anirban Roy, Peter Adams
- Eric Lipsky, Rawad Saleh
- NETL, PA DEP, WV DEP, NY DEC, MARAMA, GASP, EQT
- Heinz Endowment and DOE-NETL (funding)

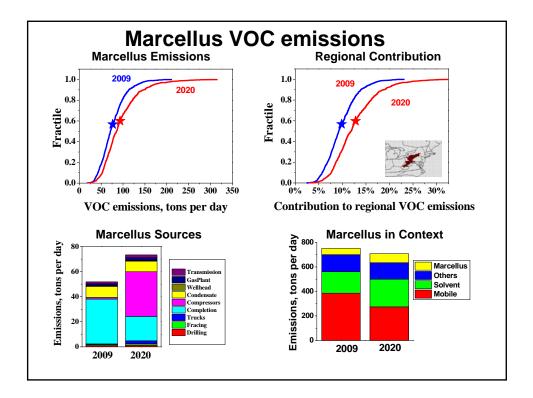


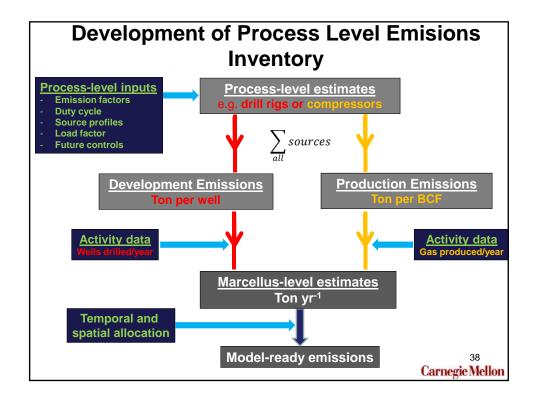


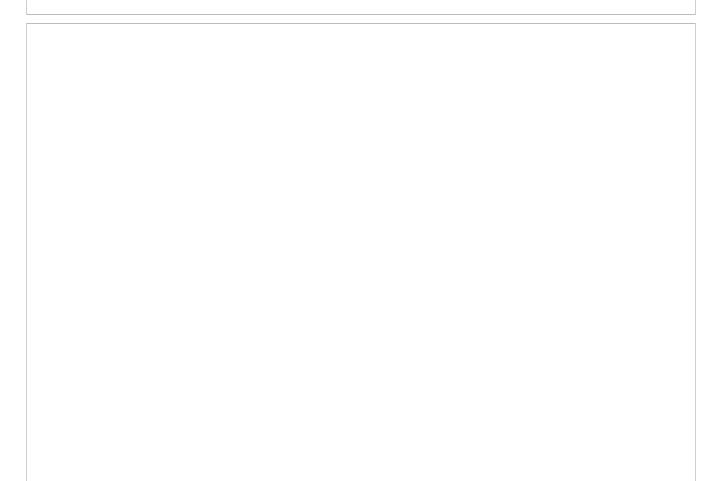


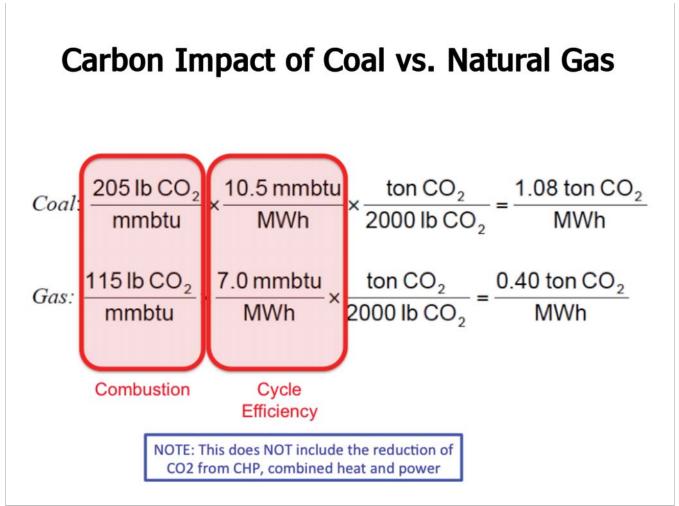


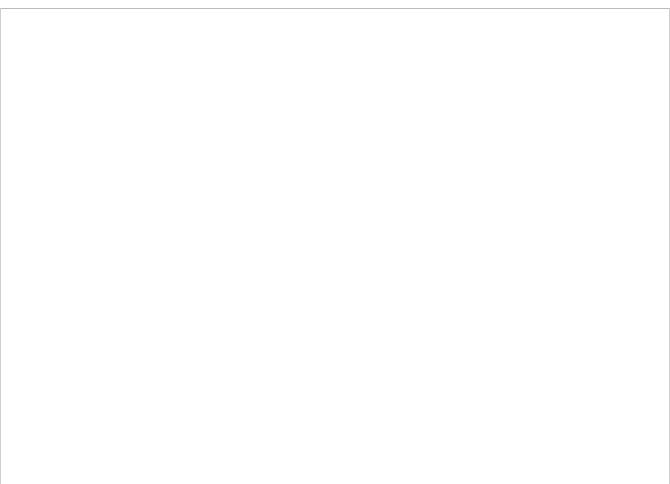




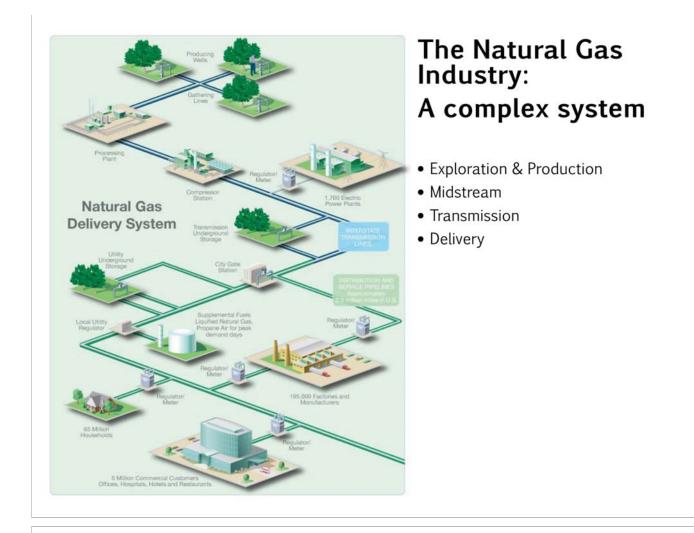



Attachment 14 Managing Air Emissions from the Natural Gas Industry


Managing Air Emissions from the Natural Gas Industry


Dr. Morgan DeFoort, Department of Mechanical Engineering Colorado State University

Colorado State University

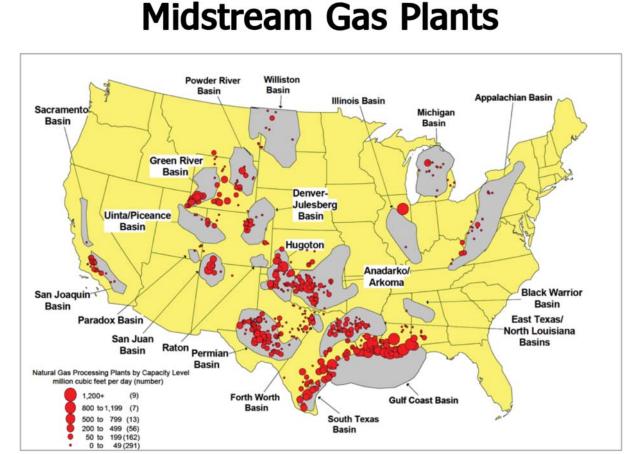


Top Ten Advantages...

- 1. Dispatchable power at scale enabling for renewables
- 2. Can reduce combustion CO2 by 50%-80%
- 3. Combustion can have super-low emissions
- 4. Biggest capacity for scale our fastest "wedge"
- 5. Cheap best consumer economics of clean energy options
- 6. U.S. (& world) has a LOT of it
- 7. It's renewable could be our largest-scale biofuel
- 8. Has centrist bipartisan support
- 9. CHP, NGVs & RNG
- 10. It's in your home (office, factory) NOW

Top Ten Disadvantages...

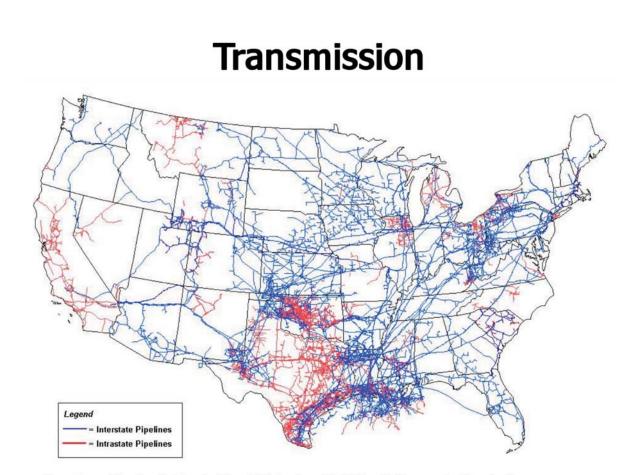
- 1. Low cost is threatening for renewables
- 2. Poor execution can increase life cycle CO2
- 3. Combustion / Leakage can have super-high emissions
- Biggest capacity for scale but unenlightened use could destroy "wedges"
- 5. Cheap challenging producer economics & impact on renewables
- 6. U.S. (& world) has a lot of it which could reduce our motivation for conservation & renewables
- 7. It's renewable but at higher cost so we don't use this feature
- 8. Has centrist bipartisan support but raging battles between the more "extreme" elements on both sides
- 9. CHP, NGVs & RNG but we don't have any
- 10. It's in your home (office, factory) NOW so our failure to enact an enlightened approach represents a huge opportunity cost!



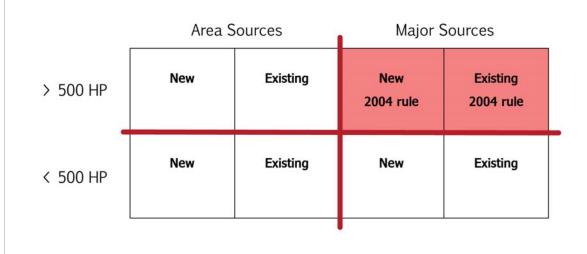
Exploration and Production

Air Emissions Sources:

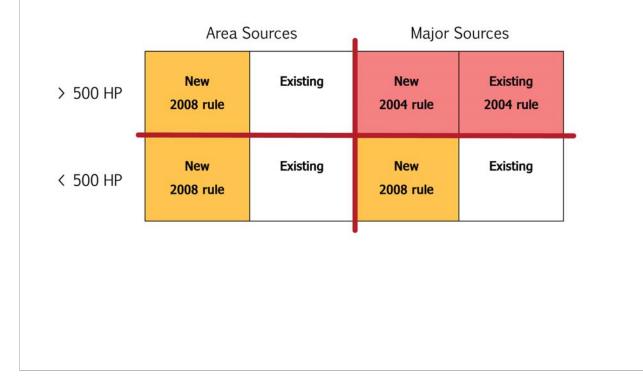
- Vehicles
- Generators (Power and Compression)
- Flares
- Gas Processing


Midstream Gas Plants

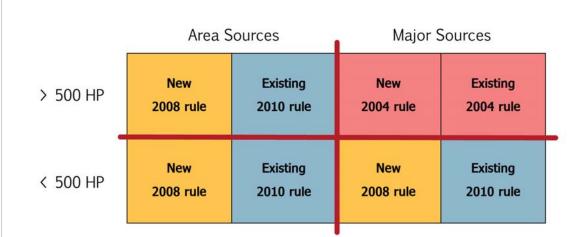
Transmission

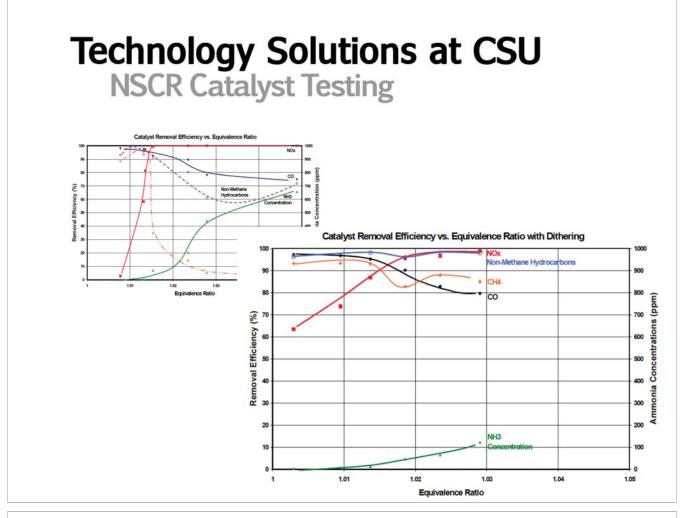

Air Emissions Sources:

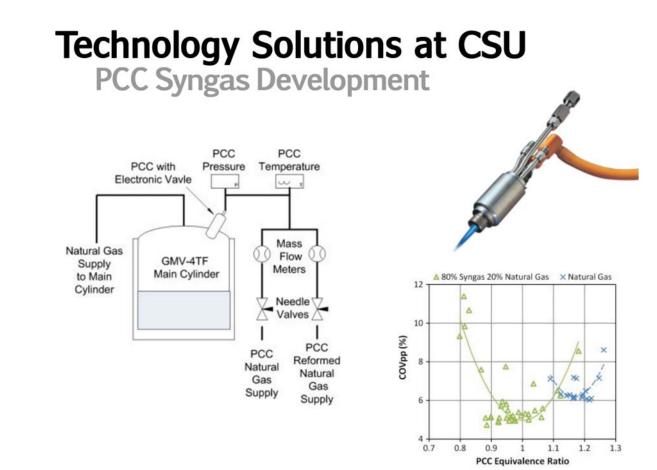
- Transmission Pipeline (Valves and Metering Equipment)
- Compressors
- Pigging Equipment (Insertion and Receiving)

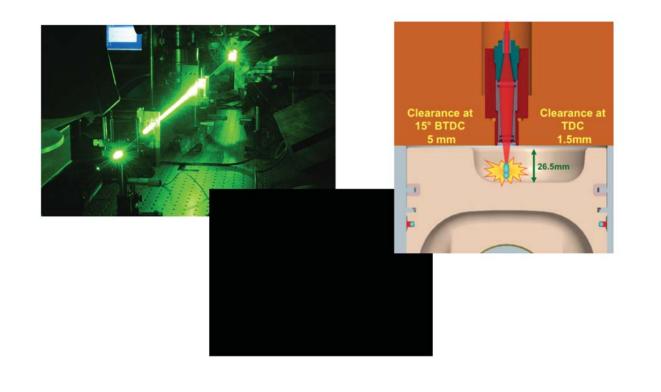


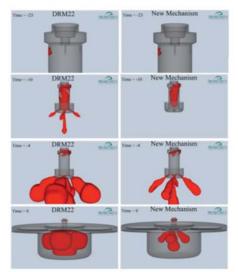
Source: Energy Information Administration, Office of Oil & Gas, Natural Gas Division, Gas Transportation Information System

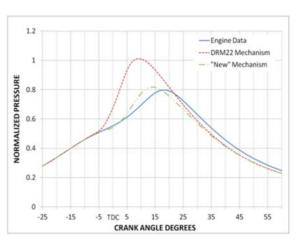

RICE NESHAP: 2004




RICE NESHAP: 2008

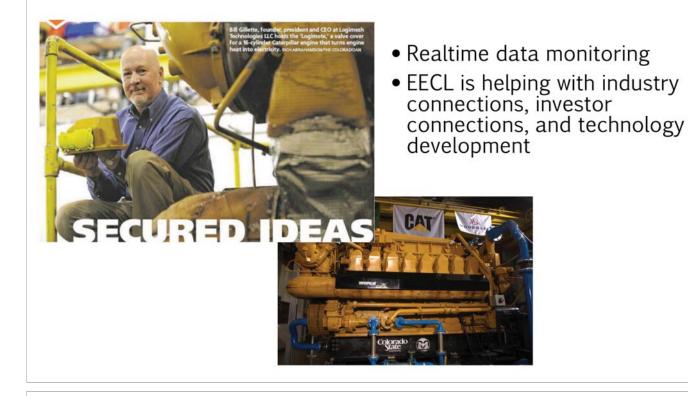

RICE NESHAP: 2010



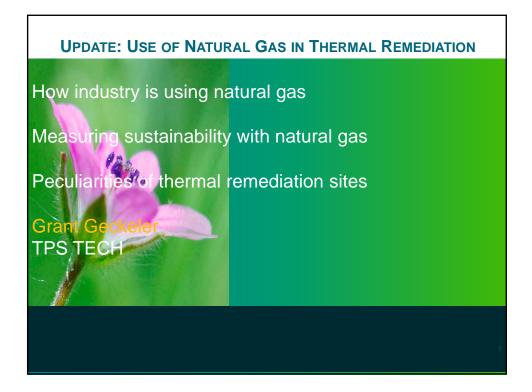

Technology Solutions at CSU Laser Ignition

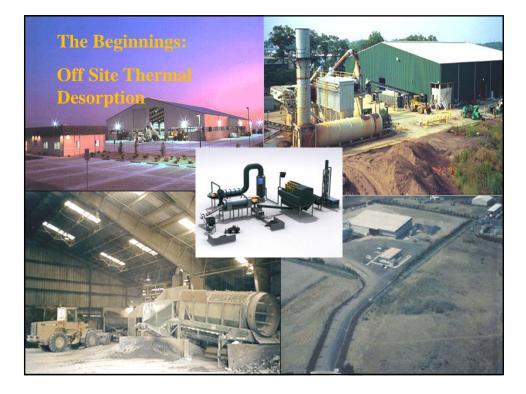
Technology Solutions at CSU Natural Gas Kinetics: Prometheus

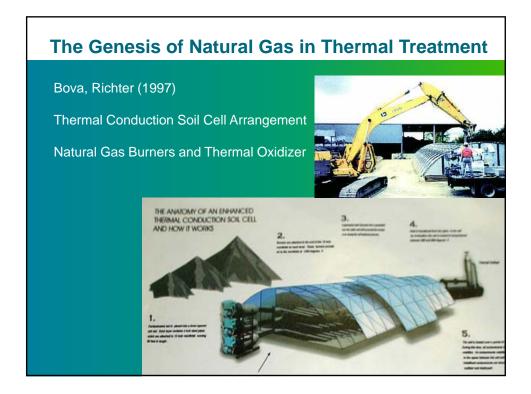
Converge modeling with new 20-species mechanism compares well with measured in-cylinder pressure data.



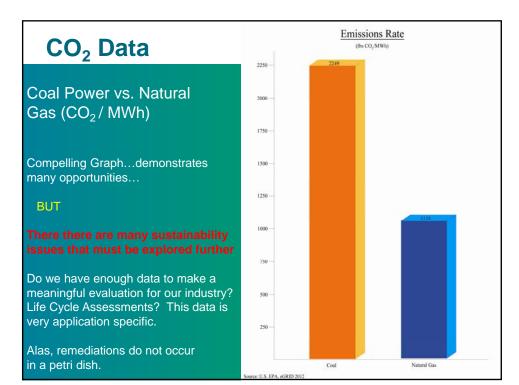
Martinez, D., Tozzi, L. and Marchese, A. J. (2012). A reduced chemical kinetic mechanism for CFD simulations of high BMEP lean-burn natural gas engines. *ASME 2012 Internal Combustion Engine Division Spring Technical Conference*, Torino, Italy, May 6-9, 2012


Technology Solutions at CSU


Infrastructure Monitoring: Logimesh


Contact:

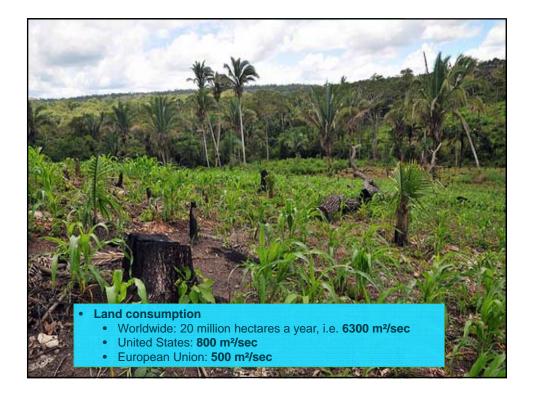
Morgan DeFoort, Co-Director, EECL Morgan.DeFoort@Colostate.edu Attachment 15 Use of Natural Gas in Thermal Remediation

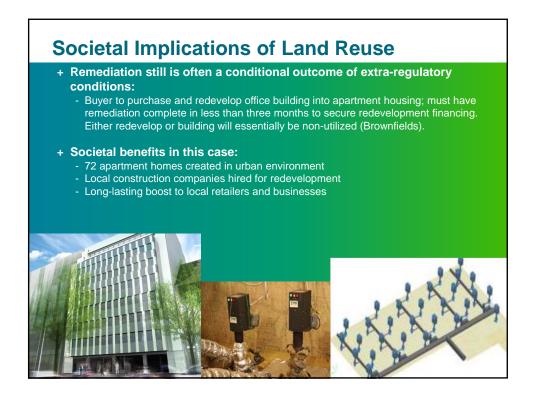


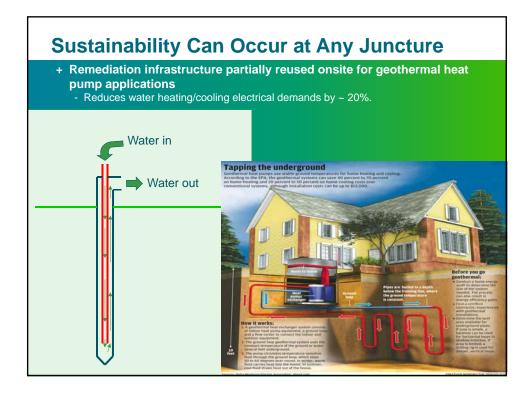
WHY THE HISTORY LESSON?

Issues relating to sustainability in remediation (economical, environmental, and social) do affect innovation and resulting products in our sector.

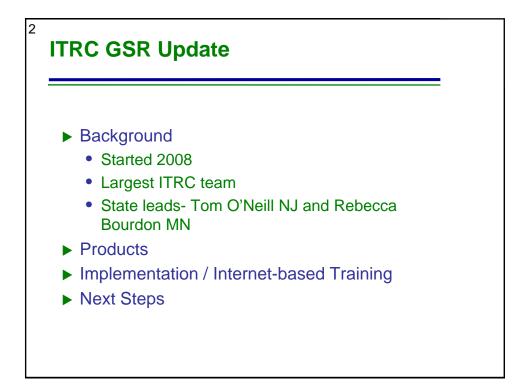
People have been listening pre-SURF, but now the volume is pumped up.

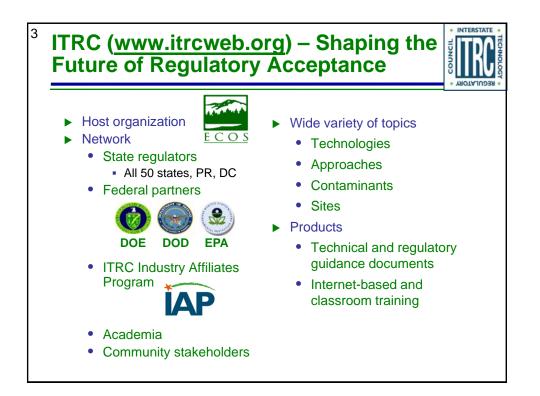


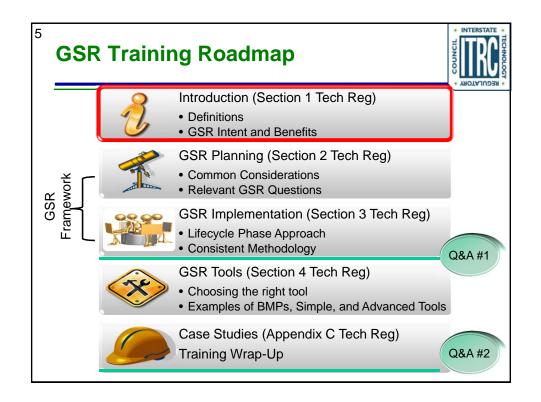

PAH Impacted Soils

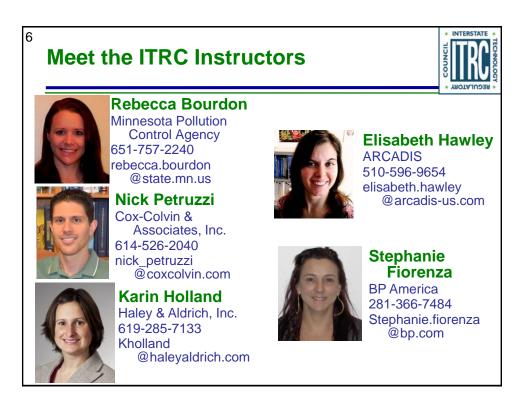

80,000 cubic yards of soil in stored piles.

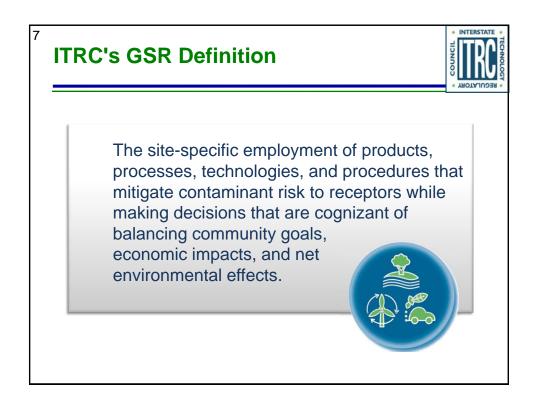
Nearest landfill / processing facility is 200 miles away. "Back of the napkin" sustainability concerns \rightarrow situational and time-based •Transportation and off-site disposal vs. on-site treatment: CO₂, NO_X, SO₄ •Facility expansion must proceed in 6 months or less

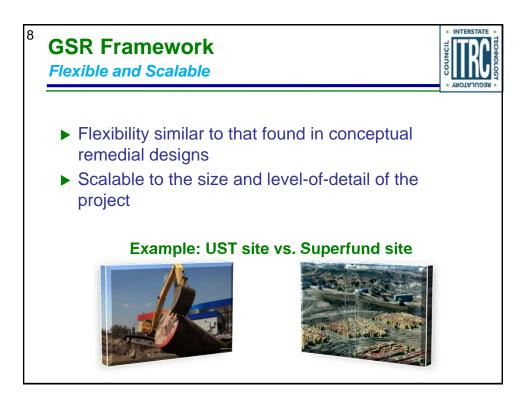


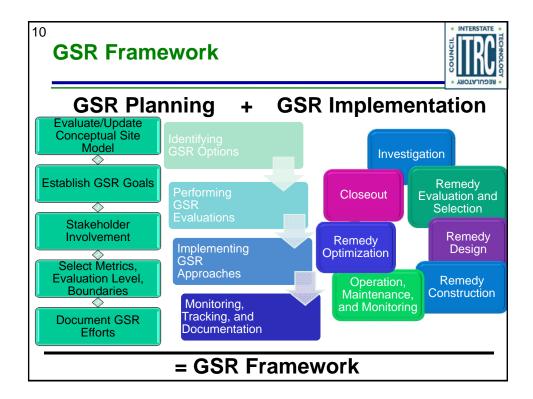


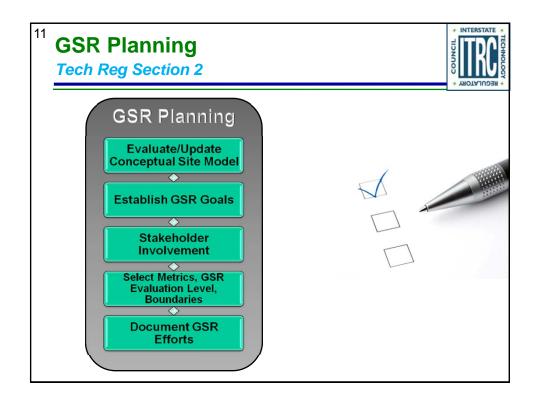

Attachment 16 ITRC Green and Sustainable Remediation

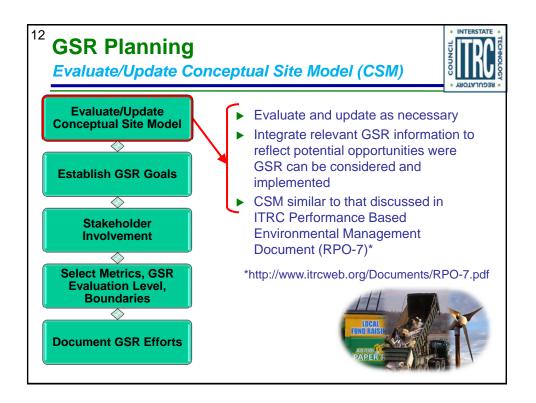


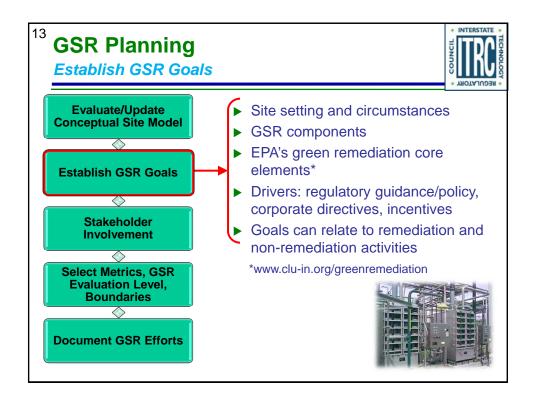


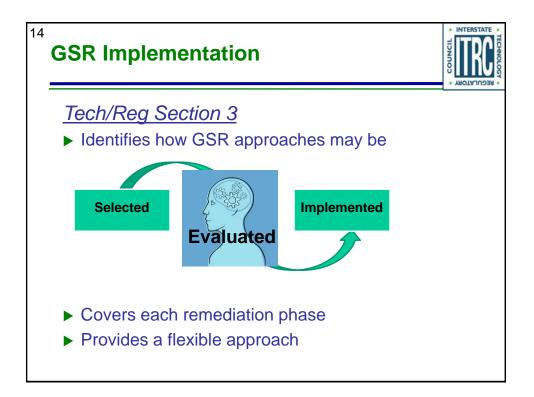


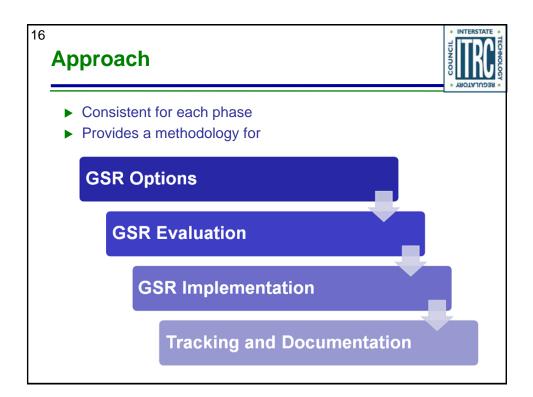


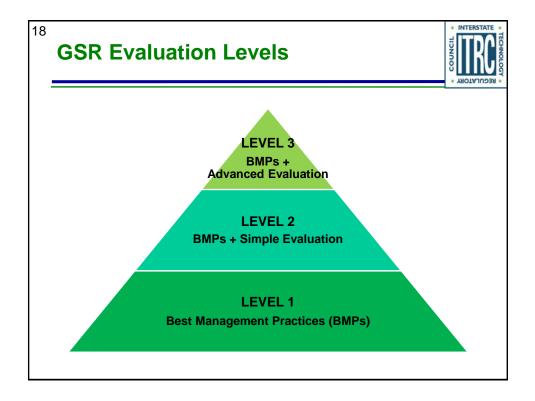


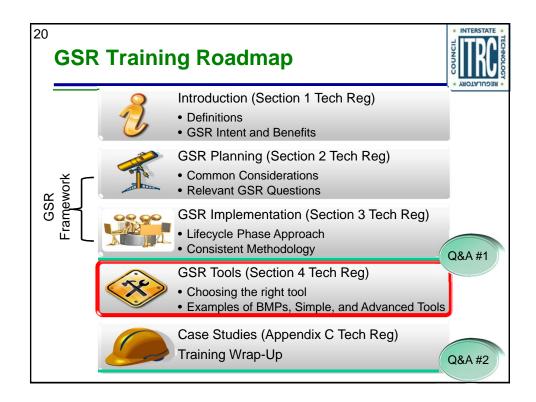




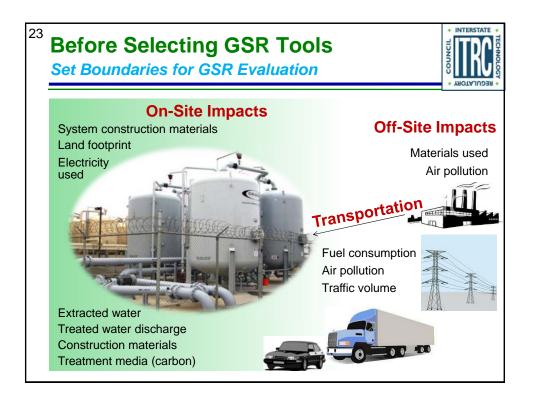

9 Relationships with Existing Programs						
► Can be	 ITRC GSR-2: Table 3.1 (excerpt) Can be applied to any federal or state program 					
Remedial Phase	RCRA	CERCLA	State Programs	LUST		
Investigation	RCRA Facility Investigation	Remedial Investigation	Site Assessment	Remedial Investigation; Secondary Investigation		
Remedy Evaluation and Selection	Corrective Measures Study and Statement of Basis	Feasibility Study, Proposed Plan, and Record of Decision	Remedial Alternative Evaluation	Conceptual Corrective Action Design; Corrective Action Plan		
Remedy Design	Corrective Measures Design/Corrective Measures Implementation Work Plan; Interim Measure	Remedial Design	Remedial Action Plan; Interim Source Removal Plan	Focused Investigation, Detailed Corrective Action Design		

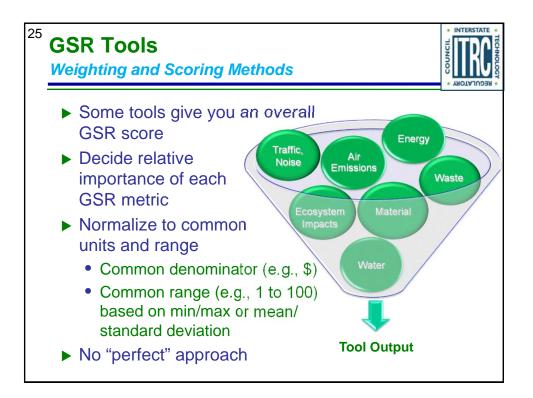


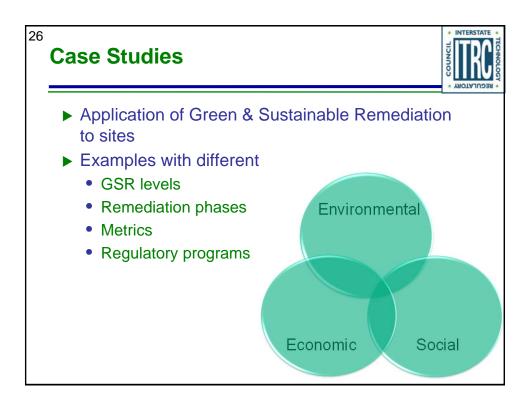



How Does GSR Fit In?		
Investigation	GSR application during planning	
Remedy Evaluation and Selection	Ideal point for incorporating GSR	
Remedy Design	Integration of GSR into selected remedy	
Remedy Construction	GSR integral part of remedy	
Operation, Maintenance and Monitoring	Cumulative benefits resulting from GSR	
Remedy Optimization	Sustainability performance improvement for existing remedies	
Closeout	Support for site reuse	

Environmental	Social	Economic
 Minimize idling Control/mitigate dust and odors Conduct air monitoring Set up an on-site recycling program Minimize fuel/energy use 	 Implement community notifications Conduct community meetings Post information on project progress Maximize use of local businesses Sequence construction activities 	- Consider economic benefits to community

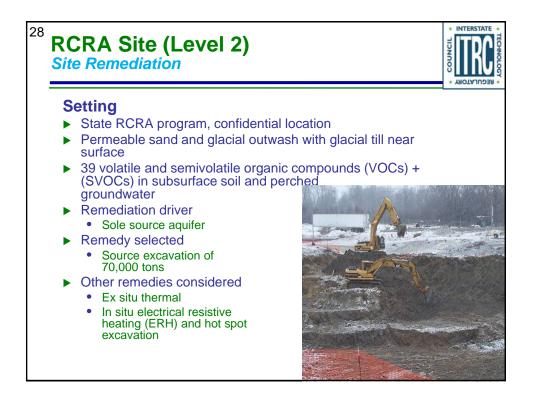


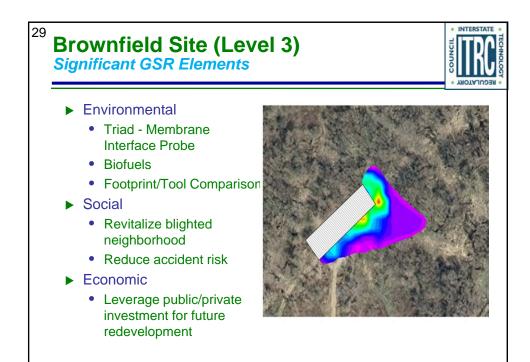


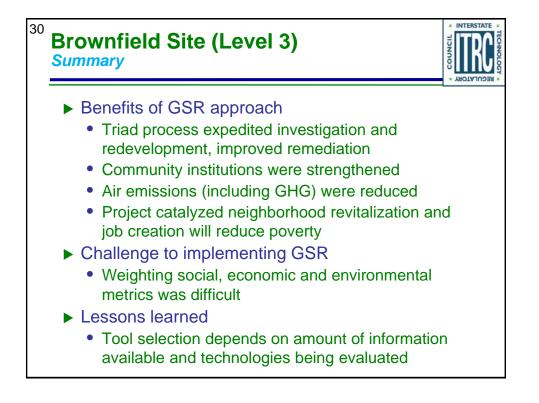

Set GSR Goals and Select Metrics		
Goals	Metrics	Tools
Example Goals	Example Metrics	
Reduce emissions	Greenhouse gases	
	Air quality emissions	
Conserve natural	Energy and water use	
resources	Resource consumption	
Create habitat	Ecological service value	
Improve community	Traffic volume	
	Jobs for local workers	

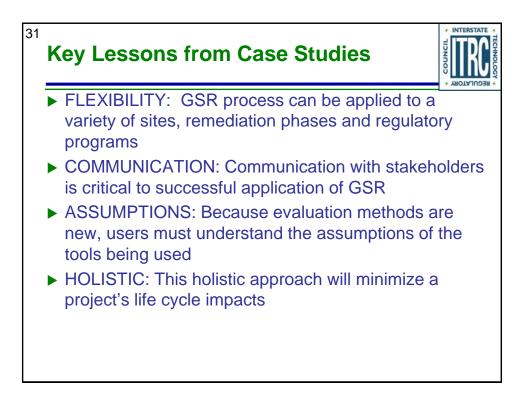
² Before Selecting GSR Tools Include stakeholders			
Stakeholders	Values	GSR Metrics	
Stakeholders Project leader	Values Project efficiency	GSR Metrics Energy & cost savings	
Project leader	Project efficiency	Energy & cost savings	
Project leader Property owner	Project efficiency Property value	Energy & cost savings Land use	

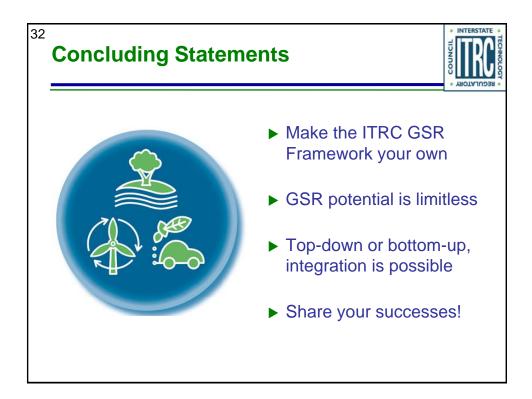
⁴ Tool Selection Select the Right Level of Evaluation			
	Level 1 BMPs	Level 2 BMPs + Simple	Level 3 BMPs + Advanced
Description	•Best practices (e.g., no idling of truck engines at job site)	 Qualitative ranking process 	• Quantitative analysis (e.g., footprint analysis, Net Environmental Benefits Analysis)
Pros	SimpleCost-effectiveEasy to implement	 Evaluates multiple metrics Simple calculations only (lb CO₂/lb contaminant treated) 	Quantifies multiple metricsTrack impacts from cradle to cradle
Cons	 Does not evaluate trade-offs 	Requires scoring method	 Requires scoring method More costly, time- consuming More data required

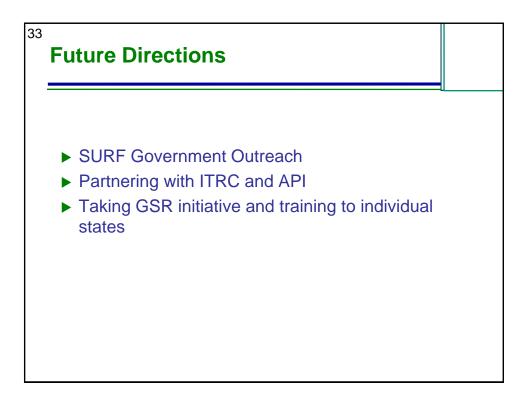


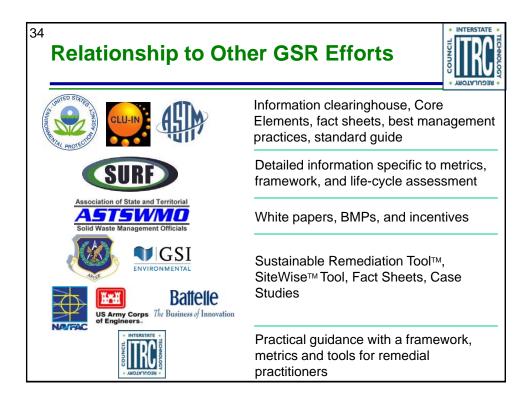

²⁷ Former Refinery Site (Level 1) Overview

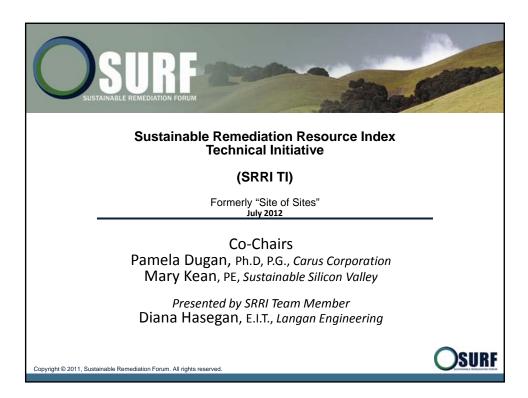

- Pre-GSR: no formal evaluation for selection of optimization measures
- GSR scope: applied during Remedy Optimization
- GSR metrics
 - Energy consumption
 - Ecological diversity
 - Community benefits

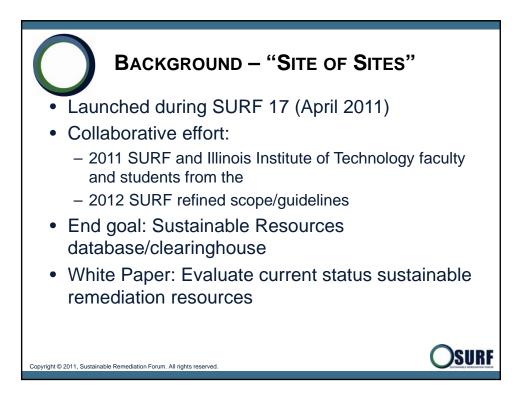


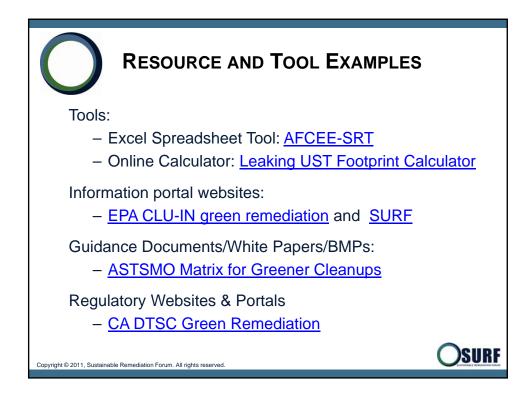

ITRC GSR-2: Appendix C

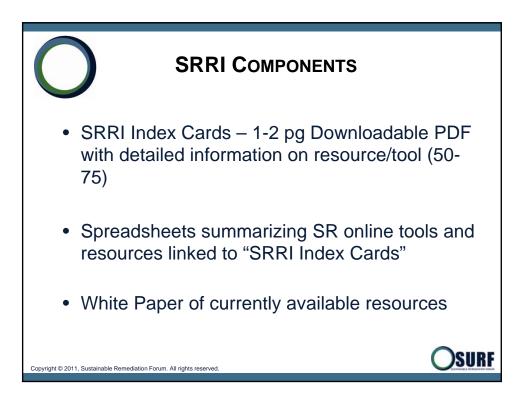


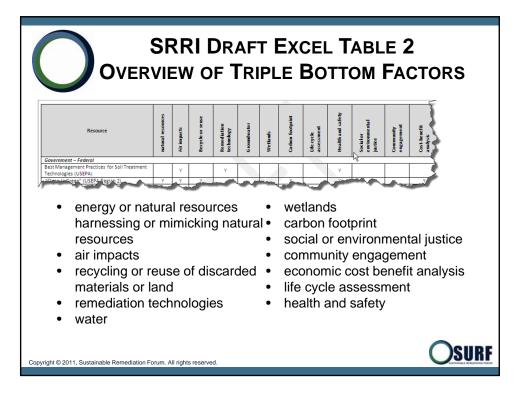







Attachment 17 Committee and Initiative Breakout Sessions Sustainable Remediation Resource Index





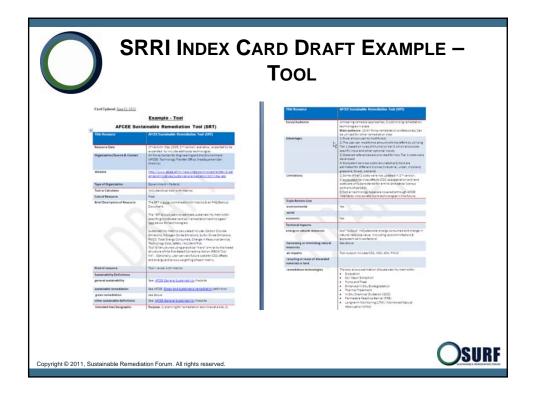
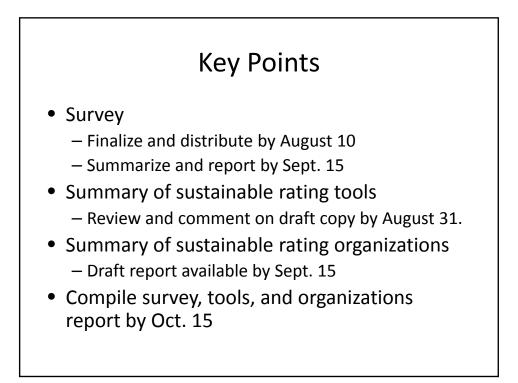
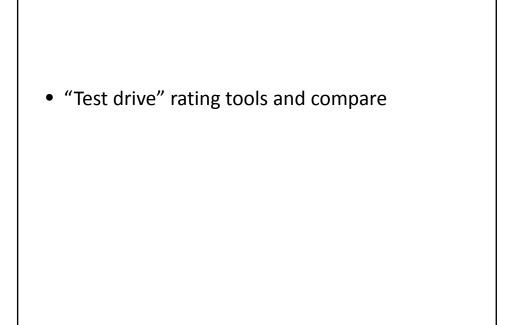
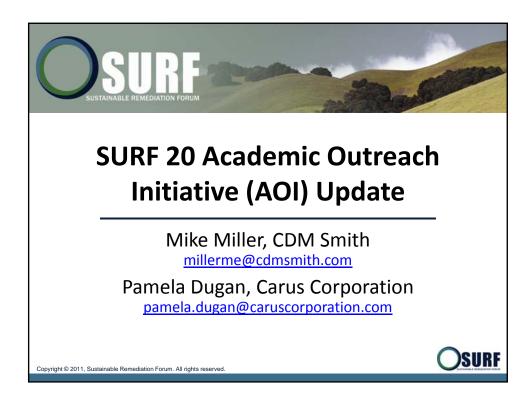


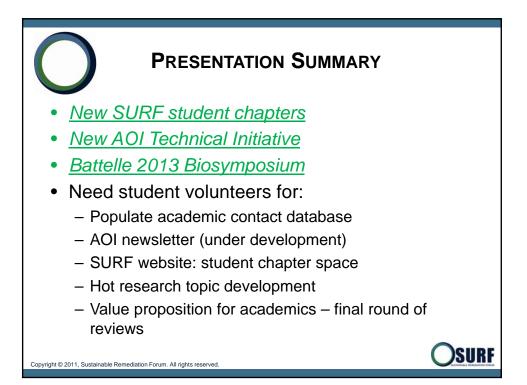
Table 1: Overview of the key characteristics of Publically Available Sust							
Resource (Developer)	Sustainability defined?	Issues considered			Measures impact		Techn refere
Courses and State	uermeu?	Environmental	Economic	Social	Qualitative	Quantitative	reien
Government – State DER-31/Green Remediation (NY DEC)	1						,
Greener Cleanups (ILEPA)		Y		Y	Y	Y	
Green Practices for Business, Site		Ŷ	-	Y	Y		
Development, and Site Cleanups (MN PCA)	Y	Y	Y	Y	Y		
Green Remediation Initiative (CA DTSC)		Y	Y	Y	Y		
Non-governmental – Non-profit organiza	tions						
Brownfields Assistance Project (Ctr Public Environ. Oversight)	Y		Y	Y	Y		
Creating Community-Based Brownfields Bedgevelopment (Am. Planning Assoc.)			Y	Y	Y		

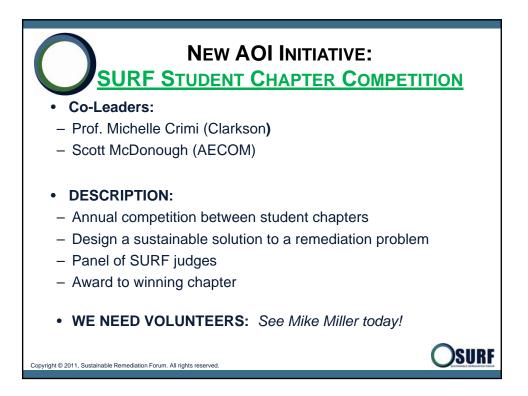

SRRI INDEX CARD DRAFT – TOOL					
Title Resource	AFCEE Sustainable Remediation Tool (SRT) 🥜				
water					
wetlands	Calculates change in CO2 sequestration values assuming total project land type is changed from one land type to another				
carbon footprint	Calculates tons CO2; lbs CO2/lb contaminant				
social					
community engagement					
economic cost benefit analysis	Calculates technology costs (dollars or \$/lb contaminant)				
ght © 2011, Sustainable Remediation Fo	OSURI				



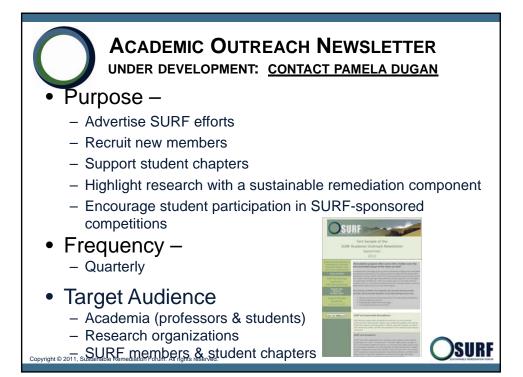
Sustainable Remediation Rating and Certifications

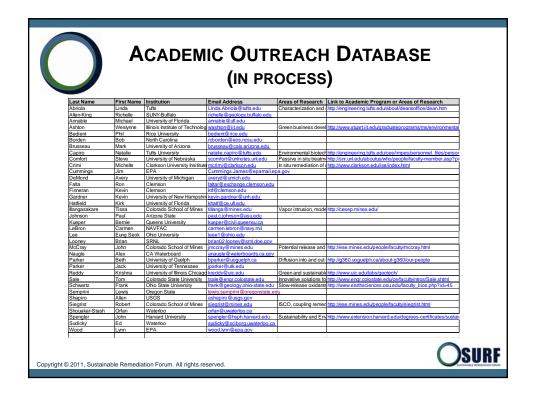

SR Rating Tool





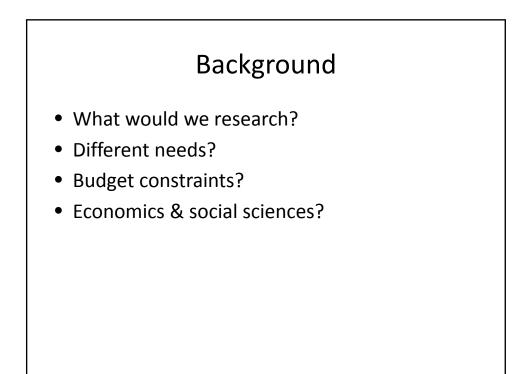
Academic Outreach



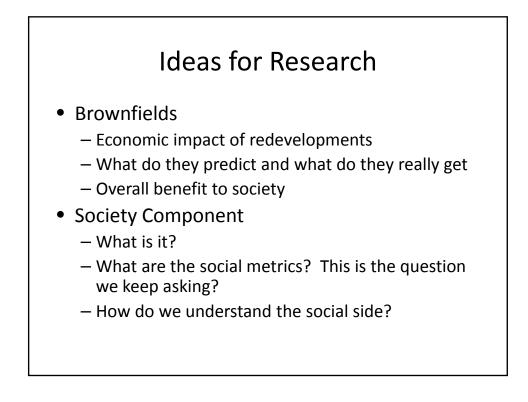


STUDENT CHAPTER CO TIMELINE	STUDENT CHAPTER COMPETITION TIMELINE						
Task	Timeline						
Research current student design competitions	May 2012						
Consolidate research and draft Basis of Competition Memorandum	June-July 2012						
Basis of Competition Memorandum submitted to Technical Initiatives Committee	July 2012						
Basis of Competition Memorandum finalized for publication	August 2012						
Draft Competition rules and marketing materials	August-October 2012						
Market Competition	November 2012 - January 2013						
Hold Competition	January- April 2013						
Assess competition results and conformance with mission	May 2013						
ppyright © 2011, Sustainable Remediation Forum. All rights reserved.							

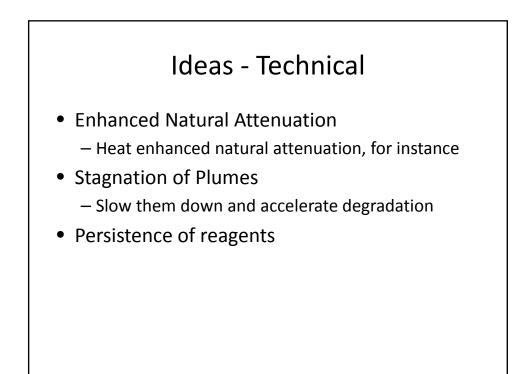
<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><table-container>

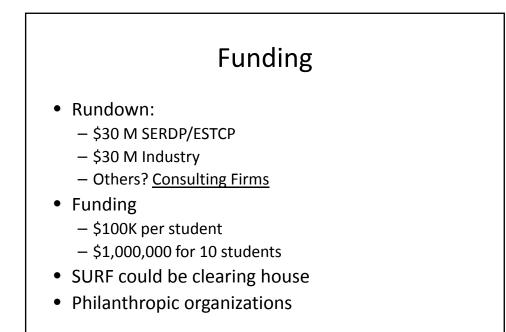


Potential Research Initiative


Research Initiative Ideas July 26, 2012 – SURF 20

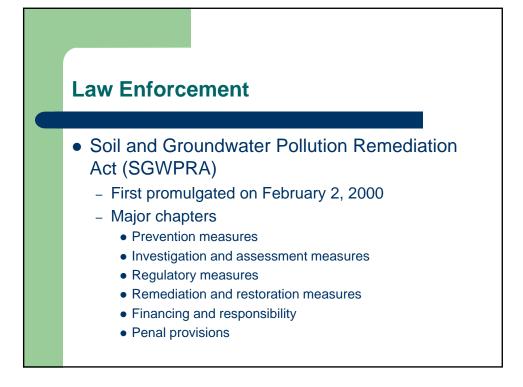
Stew Abrams Dan Watts Dustin Krajewski Zeno Levy Dave Ellis Tom Sale Mark Kluger Dan Watts Curt Stanley



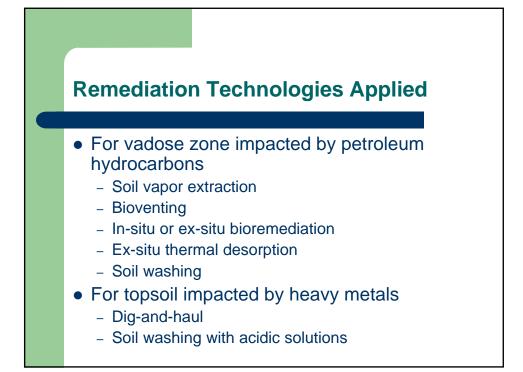

Ideas to Research

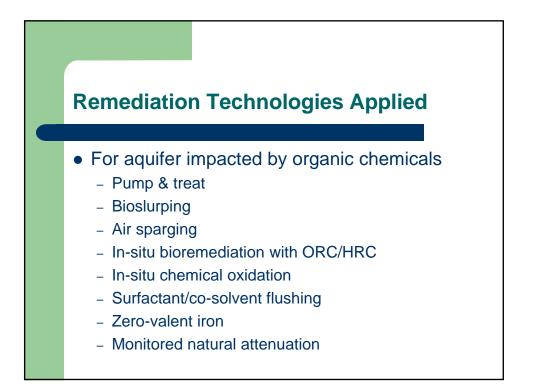
- Payment for Ecosystems Services (PES)
 - Monetization of Sustainable Remediation
 - Social science focus
 - Fully quantifies values
- "Smart grid" for remediation
 - Optimization of electrical usage
- Nexus between Risk & Sustainable Remediation
 - "well worn" perhaps not new

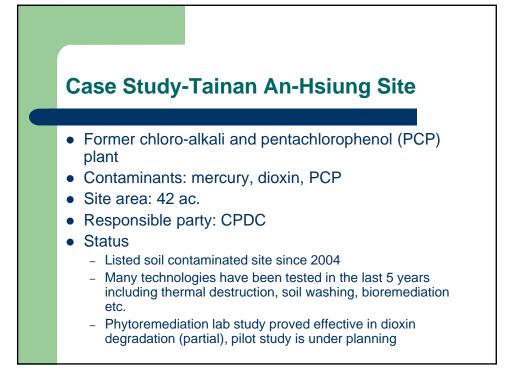
Funding

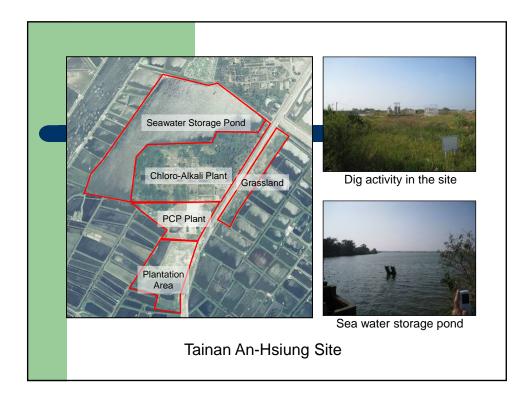

- Need a specific idea to fund
 - Interdisciplinary
 - "Making Better Decisions"
- Members of student chapters
- "Concise package"
 - Fellowship program
 - Something for the Board to approve?
 - Defined evaluation process
 - Both the successful and the unsuccessful
 - NSF, other organizations, look at them for templates




Attachment 18 Soil and Groundwater Environmental Protection in Taiwan







Attachment 19 Day 1 Reflections and Feedback

DAY 1 REFLECTIONS AND FEEDBACK

Students

- Thanks to SURF for taking passionate direction in getting students involved. It would be interesting to invite students outside of the engineering department and get some social scientists and economists in the group. How do we interest them and then how do we get them? Think about it and send Mike Rominger an email.
- For professionals, consider getting input from students and getting them to volunteer to help on initiatives. (These activities will help get them feel more a part of the organization while helping SURF.) For students, go back to schools and keep the energy up. SURF student chapters have grown past what could have been imagined two years ago.
- Consider inviting someone from sustainability department at your university to participate in student chapter.
- Distill presentation information into a few slides so students who don't know about remediation can get background.
- It was a great experience to talk to people who have been working in various disciplines. Enjoyed the broad mix of experience of SURF members.
- Everyone was approachable and helped us learn more....looking forward to more interactions.

Professionals

- Assign one SURF professional per student chapter to be liaison, help provide speaker suggestions, visit, etc. Ideally, SURF members would be a liaison for a student chapter within their geographical area.
- If SURF members are traveling, schedule time to make a presentation at a student chapter.
- A continuing challenge for student chapters is the need to reinvent themselves every few years as students leave.
- As students graduate, continue participating in SURF.
- Consider a different format for the student day. Students could give a brief 10-minute presentation about their work, possibly in combination with a poster session.
- Involve one or more student chapters in the planning process of the student day, which will allow students to have more of a voice in the process.
- Include a session on networking and transitioning into the workforce.

Attachment 20 Business Items

Potential Partnering Organizations*

- National Groundwater Association
- National Brownfields Association
- Environmental & Engineering Geophysical Society (EEGS)
- ASTM
- ITRC
- South Coast Geological Association
- American Society of Civil Engineers
- Remediation Journal
- Groundwater Resource Association
- International Phytotechnology Society

- PE and PG licensing programs
- American Institute of Professional Geologists
- Licensed Site Remediation Professional program (NJ)
- State Coalition for Remediation of Drycleaners (CA)
- Montclair State University
- Environmental Research and Education Foundation (EREF)
- Water Environment Federation
- Engineers without Borders
- American Water Works Association
- American Society of Civil Engineers
- * Suggestions provided in recent SURF survey

SURF's 2012 Technical Initiative Themes

- Cleanup of water is a central focus of the remediation industry. How can SURF help practitioners better conserve water resources during remediation projects?
- How can SURF better collaborate with other groups both nationally and internationally to develop and implement technical initiatives?
- How can SURF assist practitioners to rate the sustainability of their remedial projects in a way that is aligned with other rating systems, such as Envision, LEED and SITEs?

How to Keep up to Date with SURF Between Meetings

Call for Ideas