Sustainable Remediation Forum (SURF) November 28 and 29, 2007 Sacramento, California

This meeting marked the fifth time that various stakeholders in remediation—industry, government agencies, environmental groups, consultants, and academia—came together to develop the ability to use sustainability concepts in remedial decision-making. Those individuals that participated in the two-day meeting are listed in Attachment 1 along with their contact information.

Meeting Opening

The meeting began with Mike Rominger (meeting facilitator) welcoming all participants, thanking the California Department of Toxic Substances and Control (DTSC) for hosting the meeting, and thanking the Meeting Design Team. (Meeting Design Team members are noted by two asterisks in Attachment 1).

Mike read an anti-trust statement and discussed meeting logistics and ground rules (e.g., expectation that attendees will be active participants, show respect for others, appreciate and encourage divergent opinions, refrain from marketing, and be familiar with previous meeting minutes so the meeting can focus on new information). Mike also noted that it is assumed that nothing discussed or presented contains confidential information. Prior to the meeting, export control compliance was verified.

Maureen Gorsen (Director, California DTSC) kicked off the meeting, welcoming all SURF members and stating her strong support for applying sustainability concepts in remediation. She also highlighted her organization's efforts in this area, which are led by the Green Remediation Team.

Introductions were made, and attendees participated in an exercise that allowed them to get to know other SURF members. The meeting agenda was available in hard copy for those participants attending the meeting in person, and development of a web site to store documents (e.g., previous meeting notes) is in progress.

The draft mission statement from the February 2007 meeting was read as follows: "To establish a framework that incorporates sustainable concepts throughout the remedial action process that provides long-term protection of human health and the environment and achieves public and regulatory acceptance. Participants were reminded that this mission statement served as a starting point and could be revised as SURF develops and moves forward.

Presentations and Brainstorming

As noted on the agenda, the meeting was designed to answer the following question: "How might we integrate sustainability metrics into remediation planning?" Presentations and brainstorming discussions were designed to address this question. Each presentation, subsequent discussion, and brainstorming discussions are summarized briefly in the subsections below. Presentation slides and notes from the chart pad are provided in Attachments 2 through 12.

European SURF Activity Update

This presentation provided an update of the ongoing SURF work in Europe (see Attachment 2). Curt Stanley (Global Discipline Leader, Shell Global Solutions) reported that momentum for sustainability efforts is building, and significant interest and a willingness to contribute exist. As a result, SURF Europe has acquired limited start-up funds and currently is awaiting other budget approvals for upcoming activities and work.

Work packages (i.e., tasks) have been identified, and a Steering Group has been established by Contaminated Land: Applications in Real Environments (CL:AIRE). The Steering Group includes representatives from industry, the Environment Agency, one consulting company, and academia. The Steering Group will continue to work on work packages and initiated projects into 2008. One such project involves the group performing a pilot study of the United Kingdom benefits assessment approach to establish whether the approach is a workable base format to assess soil and groundwater management in a sustainable way. Pilot study results should be available by mid-2008.

Participants discussed the wide range between European countries of both environmental challenges that need to be addressed and existing regulations. In Eastern Europe, soil standards exist but no groundwater standards have been established. On the other hand, the Netherlands and the United Kingdom have standards for both soil and groundwater and seem to be the most forward-thinking regarding sustainability. Other countries, such as Germany, pump-and-treat systems are required as part of industrial designs, making it very difficult to consider and apply alternate remedial technologies. Curt stressed that the goal of SURF Europe's efforts is to create a solution that is workable for all sites and one that addresses challenges holistically rather than focusing only on one aspect (e.g., point sources).

California DTSC Green Remediation Team Briefing

The California DTSC chartered an initiative known as the Green Remediation Team in early 2007. This presentation by team members described how the team is evaluating ways to identify and characterize remediation technologies that provide benefits such as reduced energy consumption, increased reuse of materials and resources, and reduction of greenhouse gases. The team has reviewed available literature and enlisted the help of the DTSC's experts in life-cycle analysis. The presentation was aimed at stimulating discussion among participants as to efficient and straightforward ways of identifying and evaluating the "green" characteristics of remediation technologies. Presentation slides are provided in Attachment 3.

Discussions focused on how to keep the process simple, yet defensible. Some participants mentioned two key factors that add to the complexity of sustainable metrics: local vs. global scale, and time required vs. environmental impact. The need for case studies in which the state is the responsible party was cited as a useful way to begin addressing these challenges. One participant mentioned that the U.S. Environmental Protection Agency (USEPA) Region IX has requested to perform a sustainability pilot study at the Lorentz Barrel & Drum site in San Jose, California.

Green Cleanup Certification

By the year 2020, the USEPA and the authorized states plan to have largely completed the work of implementing final remedies at all facilities requiring Corrective Action. As a result, the

amount of contaminated sites needing to be cleaned up has doubled (see quantification of "the numbers" in Attachment 4). With this in mind, Deb Goldblum (Project Manager, USEPA Region III) focused her presentation on how to consider sustainability as part of the cleanup process without slowing down cleanup.

One approach Deb discussed was promoting sustainable remediation by mimicking the Leadership in Energy and Environmental Design (LEED) certification approach and developing a prototype rating system for sustainable remediation. This rating system would evaluate the full environmental impact of a cleanup to maximize the net environmental benefit of engineered remedies. The system could guide and stimulate efficient, cost-effective, low-impact site remediation by encouraging property owners, developers, and communities to go beyond state and federal requirements in their cleanups and land revitalization projects.

Deb followed this proposal by asking participants how they would integrate the sustainability concept into remediation. Although the obvious answer to this question seemed to be to integrate sustainability into policy and force compliance, Deb reminded participants of the limitations of that approach when considering the USEPA 2020 goals. Many participants agreed that the solution should focus on incentives for responsible parties. Some approaches that were discussed are as follows:

- □ Consider certifying presumptive remedy (i.e., not necessary to evaluate a number of other technologies).
- □ Leverage capabilities of organizations such as the American Society for Testing and Materials (ASTM) or the American Academy of Environmental Engineers (AAEE) to develop training package, and then develop implementation strategy [perhaps through the Interstate Technology Remediation Council (ITRC)].
- Link sustainability to the nine criteria of the National Contingency Plan (NCP).
- □ Imitate the Risk-Based Corrective Action (RBCA) process.

Participants agreed that these ideas were starting points and that many challenges lay ahead. Regardless of the approach, participants agreed that open communication between all stakeholders would be the key to successfully integrating sustainable concepts in remediation.

Making SURF Carbon Neutral

Mike Rominger (meeting facilitator) led a brainstorming discussion to answer the following question: How might we make SURF carbon neutral? Although many participants mentioned that using teleconferencing, net meeting, web meeting, or video conferencing technologies would reduce the carbon emissions used to attend a SURF meeting, an equal amount of participants expressed a high value for face-to-face meetings. Other responses focused on collecting contributions to buy carbon credits to offset the carbon emissions, holding meetings near public transportation, implementing a remedy (as SURF) that reduces carbon emissions, and plant trees to offset the carbon used. Detailed responses are provided in Attachment 5.

All participants agreed to reuse name badges and tent cards at the next meeting, and plastic water bottles and trash were recycled during the meeting. The discussion of how to make SURF carbon neutral is ongoing and will continue at future meetings.

Net Environmental Benefit Analysis: Overview and Case Study

Joe Nicolette (Vice President, Director EcoValuation Practice, CH2MHill) provided a review of natural resource valuation metrics that can be used to demonstrate the benefits of land management, site remediation, and site restoration. Joe showed how the application of these approaches could be linked to demonstrating environmental sustainability and making overall land management decisions. Both ecological and human use service metrics were discussed, as well as the value of quantifying these metrics so that the ecological and human use values associated with actions can be used by regulatory and corporate entities in managing land assets and potential environmental liabilities. Joe presented several case studies where these valuation metrics were used to demonstrate the quantified benefits associated with selected actions. An overview of an ongoing USEPA pilot study was also presented. Presentation slides are provided in Attachment 6.

Discussions focused on the complexity of net environmental benefit analysis in a changing environmental footprint, where a benefit is provided to another location (i.e., offset) instead of cleaning up the contaminated location to a regulatory level. Human use can be a key factor in determining these offsets. Some participants expressed concern as to how to account for future changes in parameters such as exposure pathways and land use when developing offsets. All participants seemed to agree that if a project was implemented in different jurisdictions with different project teams, the vast range in cleanup goals and risk assessment practices combined with the variability of interpretation between agencies and individuals could lead to completely different results. With that in mind, one participant mentioned that additional analyses required by activities like net environmental benefit analysis might only add to that range and not reduce it.

Life-Cycle Analysis for Use in Evaluating Sustainable Remediation Metrics

Through this presentation, Mike Houlihan (Principal, Geosyntec) and Bob Boughton (Senior Hazardous Substance Engineer, California DTSC) introduced life-cycle analysis (LCA) as a tool for evaluating the metrics associated with sustainable remediation. LCA has been used for many years to evaluate the overall impacts of product development on the environment. More recently, the method has been used to evaluate the overall impacts of certain processes, including environmental remediation, on the environment. A key step in performing a LCA involves defining the impacts associated with the process; this step is analogous to the evaluation of sustainability metrics that has been discussed at previous SURF meetings. Moreover, LCA offers a framework for interpreting the evaluation of metrics so that the environmental impacts of different remediation alternatives can be compared; this framework might be useful in extending the work of previous SURF efforts. Presentation slides are provided in Attachment 7.

At the end of the presentation, participants discussed the need for a framework for interpreting sustainability metrics and the value of LCA methods for this purpose. While LCA results can be used to make decisions at sites, LCA can also be used as a tool to explore the impacts of changes to different variables (e.g., material changes). Participants agreed that the values applied in LCA are the crux of the analysis and the starting point. For sustainable remediation, these values could be existing regulatory screening levels or limits. All participants agreed that the LCA would need to be developed with regulators and property owners, considering site-specific factors. Some participants discussed that LCA could be an interesting tool to help define the process of what to do with metrics the team has developed thus far. Other participants

mentioned that LCA could be used to drive innovation in technology methods, using the analysis as a tool to set targets (e.g., how can we do this with 20% less energy next time?).

Metrics: The Search for the Critical Few

This brainstorming session focused on answering the following two questions:

- □ What is holding you back from practicing more sustainable remediation practices right now?
- □ What two metrics are the most important to you?

Specific answers to these questions are provided in Attachment 8. The two most common answers to the first question were (1) inherent agency skepticism or lack of interest and (2) lack of time. The most common metrics that were important to participants were energy use, economic cost, greenhouse gas emissions, carbon emissions, and environmental benefit.

Discussions among participants focused on the skepticism about what a sustainable process is because there is no well-worn path to sustainable remediation. One participant noted that there is no baseline to prove that current remedial actions at sites are *not* sustainable vs. other actions. Another participant reiterated what had been said earlier that, in many cases, sustainable remediation would be just another box for busy regulators to check. Other participants emphasized the need to get restorative rather than just concentrating on offsets. Finally, all participants seemed to agree that the key to successful sustainable remediation involved the following: regulatory allowance, generic metrics, a framework to select or evaluate metrics, and guidance and training.

Participants looked to excerpts of the Carol Browner memo that was presented by Joe Nicolette (CH2MHill) (see Attachment 6) and saw that it was necessary to "maintain a level of reasonableness" in approaching sustainable remediation metrics. All agreed it is important to bring rationality to the remedial process rather than just creating more problems than the ones you are trying to solve.

A Cooperative Approach to a Remediation Solution with a Sustainability Component

This agenda item consisted of a presentation by Deb Goldblum (USEPA Region III), a panel discussion, two presentations by Brandt Butler (URS) and a skit.

 USEPA Region III/DuPont RCRA Pilot: How We Work Together Deb Goldblum (USEPA Region III) provided a brief overview of how USEPA Region III and DuPont worked together on a pilot for a Resource Conservation and Recovery Act (RCRA) Corrective Action site in Virginia. Instead of a traditional approach to remedial action decision-making that involves a long timeline and many report iterations, a remedial solution was identified using face-toface meetings and a cooperative approach. The USEPA and DuPont held meetings every two months to develop a framework to assess sustainability and implement a remedial strategy for one area on-site. The remedy was required to meet the following three threshold criteria: protect human health and the environment, achieve media cleanup objectives, and control sources to the extent practicable. A remedy was selected for the area within six months. Presentation slides are provided in Attachment 9.

Panel Discussion

Deb Goldblum (USEPA Region III), Dave Ellis (DuPont), and Brandt Butler (URS) serving as panel members. In response to what DuPont's motivation is for including sustainability in the remedy selection process, Dave stated that sustainability is a DuPont core value and that the company is always looking for ways to reduce its environmental footprint. Dave believes that the process of considering sustainability at DuPont sites has improved the quality of the remedies and subsequent reports. Deb said that sustainable remediation is something that the USEPA is exploring as a way to maximize the net environmental benefits from cleanup. Deb clarified that the USEPA would probably not be able to address sustainable remediation as an entire organization because of the "numbers issue" she had previously discussed (see Attachment 4). However, the approach could be used to help streamline projects and achieve site cleanup quicker. Participants noted that the USEPA Office of Solid Waste and Emergency Response (OSWER) currently has a greenhouse gas and climate change initiative that could be useful as SURF moves forward. One reference for this initiative is a document entitled Green Remediation and the Use of Renewable Energy Sources for Remediation Projects by Amanda Dellens (available at http://www.clu-in.org/download/ studentpapers/Green-Remediation-Renewables-A-Dellens.pdf).

When asked to identify the greatest challenge of the pilot, Brandt responded that a significant amount of preparation time was required before each meeting with the agency so that anticipated questions from the agency could be addressed during the meeting. From an industry perspective, Dave thought the greatest challenge was introducing new team members into the relationship with agency personnel and stepping back from preconceived notions of how to address the contamination onsite. Deb believed that the challenge was slowing down the discussions during the meetings so that technical issues could be fully digested.

Panel members agreed that the process was effective in addressing differences in opinion, allowing these differences to be resolved through full-day discussions versus back-and-forth correspondence of hard copy documents. Deb stressed that this approach allowed all involved to better understand the thought process behind thoughts and opinions. In response to further questions, Deb mentioned that the state agency and her supervisor were present at all meetings, and USEPA Headquarters reviewed the list of impacts prior to remedy selection. Brandt clarified that the stakeholders, not industry, chose the parameters that were important to this site (e.g., particulates).

□ Sustainable Parameter Estimation Methodology

Brandt Butler (URS) described the evaluation protocol that DuPont has developed to assess sustainability indicators [i.e., carbon dioxide (equivalents); energy; natural resource consumption; occupational risk; and local issues such as air quality parameters, traffic, or sound]. Brandt explained the step-wise process that is used during the remedial action selection phase using information available from the remedial investigation phase. This process has been implemented in the aforementioned USEPA Region III pilot for a DuPont site in Virginia. The highlights of the process were reviewed and are summarized briefly below. Presentation slides are provided in Attachment 9.

- Understand site impacts
- Agree on remedial action objectives based on demonstrated migration pathways
- Brainstorm candidate remedial technologies and refine them based on their ability to achieve the threshold criteria mentioned earlier
- Based on source volume and mass, evaluate the short list of technologies for their sustainability indicators by assessing the impact of each task in technology implementation (e.g., mobilization, drilling, operation and maintenance)
- Assess remaining remedy selection criteria and sustainability indicators as an additional balancing criteria for each technology

Participant discussions focused on the debits and credits applied during the process, and one participant expressed concern that industry is getting potential monetary value (carbon credits) for cleaning up contaminants that they had released to the environment. Deb Goldblum (USEPA Region III) responded, stating that, at this Virginia site, DuPont could have selected a technology that did not destroy the contamination (i.e., dig and haul). Instead, source control (i.e., treatment in place) was selected and sustainability was the driver for this decision.

 Sustainable Parameter Sensitivity Analysis Methodology Brandt Butler (URS) described the methodology for developing the sensitivity of the sustainability assessments for the Virginia site. Mass and volume were increased by 10 and 100 times compared with the base case, and constituent mix was varied. The change in estimated carbon dioxide equivalents was documented for five technologies: capping, excavation, in situ zero valent iron (ZVI)-clay treatment, in situ soil vapor extraction (SVE), and ex situ thermal treatment. Then, the assumptions (area, depth, concentration) associated with each permutation in site condition (mass, volume, constituent mix) were documented.

The sensitivity analysis showed that capping was largely proportional to area, excavation was largely proportional to volume, ZVI-clay treatment was largely proportional to volume, SVE was most influenced by area and treatment time, and ex situ thermal treatment was proportional to volume and vapor controls. Thus, no technology is always more sustainable than the other. The scale of the remedy (mass, volume, compositions) determines the remedy with the lowest (and highest) carbon dioxide footprint. Presentation slides are provided in Attachment 9.

Participant discussions focused on the fact that the sensitivity analysis described was not a "true" sensitivity analysis and that the goal is to use the analysis to help make better decisions.

Skit

Finally, Deb Goldblum (USEPA Region III), Dave Ellis (DuPont), Brandt Butler (URS), and Mike Rominger (meeting facilitator) acted in a light-hearted skit to illustrate how the collaborative approach on this project streamlined the remedy selection process and more effectively used resources.

A Revised Corrective Measures Study (CMS) Outline Based on Sustainability

DuPont and the USEPA Region III are developing an expedited CMS for the sustainability pilot project at the Virginia site discussed in the previous presentations. The standard highly documented and highly iterative process of developing a CMS is being replaced with a series of face-to-face discussions and collaborative decision-making. A streamlined document is produced in which the only technologies discussed in detail are those which are suitable for use on-site. The content of the meetings and off-line analyses is documented by a series of tables and matrices rather than detailed text. Both DuPont and USEPA Region III team members believe that this new CMS process is much more efficient and effective than its traditional counterpart. Presentation slides are provided in Attachment 10.

Preparing a White Paper about Sustainable Remediation

Paul Hadley (California DTSC) and Dave Ellis (DuPont) discussed a new effort within SURF to write a white paper about sustainable remediation. The draft title of the white paper is *Integrating Sustainability Principles, Practices, and Metrics into Remediation Projects*, and a draft outline of the paper was distributed to participants prior to the meeting and is provided in Attachment 11. The purpose of the white paper is to collect, clarify, and communicate the thoughts and experiences of SURF members on sustainability in remediation. SURF has raised the national awareness about sustainability practices in remediation, and the proposed white paper is intended to give depth and breadth to the discussion with other parties. Paul emphasized that the development of the paper should be a transparent process whereby issues do not need to be resolved, merely documented by a consensus process.

Facilitators for major chapters were assigned, and participants volunteered to help specific facilitators based on the chapter topic and their area of interest or expertise (see table on next page). Each group gathered together to discuss an action plan for their chapter. Participants agreed that at least one year would be needed to develop the white paper, with progress checks along the way.

Chapter Title	Facilitator	Volunteers
Description and Current		Carol Dona, Corps of Engineers
Status of Sustainability	Dick Raymond, TerraSystems	Lowell Kessel, GEO
in Remediation	Terracysterns	Chuck Newell, GSI Environmental
		Bob Boughton, California DTSC
		Catalina Espino Guerrero, Chevron
		David Hull, LFR
Sustainability Concepts	Stephanie Fiorenza, BP	Steve Koenigsberg, WSP Environmental Strategies
Remediation		Nick Lagos, Lagos
		George Leyva, California Region II Water Board
		Tiffany Swann, GSI Environmental
		Dave Woodward, EarthTech
		Louis Bull, Waste Management
A Minimum for		Mike Kavanaugh, Malcolm Pirnie
A VISION for Sustainability	Paul Favara, CH2MHill	Maryline Laugier, Malcolm Pirnie
Cucianability	0112101111	Gary Maier, EarthTech
		Maile Smith, Northgate Environmental
		Mike Houlihan, Geosyntec
The Impediments and	David Major,	Charlie So, Shaw Environmental & Infrastructure
Barriers	Geosyntec	Curt Stanley, Shell Global Solutions
		Elizabeth Wells, San Francisco Water Board
Vignottos of Succoss	Brandt Butler,	Maile Smith, Northgate Environmental
vignettes of Success	URS	(Other SURF members ad hoc)

Applying Sustainability to Small Sites

Mike Rominger (meeting facilitator) led a brainstorming discussion about how to apply sustainability to smaller sites. This topic was discussed because, when developing metrics for sustainability, it will be important that the metrics are broadly applicable to a variety of site types. In the extreme cases, a comprehensive sustainable evaluation at a small site could be costlier than the remedy itself. This topic was aimed at initiating discussion among SURF members about how to address these issues. Participants defined small sites as those sites with a relatively small area of contamination, such as formerly used defense (FUD) sites, brownfield sites, gas stations, dry cleaners, manufactured gas plant (MGP) sites, abandoned mine sites, paint/print/body shops, fire training pits, car/truck washes, junkyards, metal salvage yards, and small municipal landfills. Participants also mentioned the need to include the issue of small sites in the white paper. The detailed notes from the brainstorming discussion are provided in Attachment 12.

News Items

Participants discussed the following news items at the meeting:

- Deb Goldblum mentioned that the editor of *Brownfield News* would like to include an article about SURF activities. The following participants volunteered to help write the article: Dave Woodward (EarthTech), Stephanie Fiorenza (BP), Dick Raymond (TerraSystems), Lowell Kessel (GEO), Mike Kavanaugh (Malcolm Pirnie), John Scandura (California DTSC), Paul Favara (CH2MHill), and Steve Koenigsburg (WSP Group). Dave Ellis (DuPont) will serve as the coordinator for this effort, and Deb Goldblum volunteered to serve as the liaison between the group and *Brownfield News*.
- Dave Ellis mentioned that SURF was the topic of a recent editorial for *Groundwater Monitoring and Remediation* (Volume 27, Issue 4, pages 47-49, Fall 2007).
 "Surf's Up Dude!" was authored by David Major (Geosyntec), a member of SURF.
- Erica Becvar (Air Force Center for Engineering and the Environment) asked if SURF members would like to speak at the upcoming Association of State and Territorial Solid Waste Management Officials (ASTSWMO) symposium in San Diego, California, on March 12 and 13, 2008. The theme of the symposium is "balancing sustainability concepts with remediation goals." Deb Goldblum, Curt Stanley, Stephanie Fiorenza, and members of the DTSC's Green Remediation Team expressed interest in speaking. These individuals were forwarded relevant symposium information via e-mail after the meeting.

Path Forward

The following path forward items were identified at the meeting:

- Based on feedback at the meeting, volunteers for the design team are as follows: Maile Smith (Northgate Environmental), Dave Woodward (EarthTech), Gary Maier (EarthTech), and Chuck Newell (GSI Environmental). Additional members are welcome. Meeting Design Team members should expect to spend about eight hours on the effort between now and the next meeting.
- 2. Participants agreed that it would be helpful to discuss a test site at the next meeting. Dave Ellis (DuPont), Dick Raymond (TerraSystems), Chuck Newell (GSI Environmental), and Paul Favara (CH2MHill) volunteered to work as a team to develop the test site. The team will distribute the details of the test site to SURF members, who will perform their own sustainability analysis on the site prior to the next meeting. Results and key learnings will be discussed at the next meeting.
- 3. The next meeting will be hosted by SURF member Ralph Nichols at Savannah River National Laboratory in early March 2008. Additional meeting logistics will be forwarded as they become available. A draft agenda will be developed by the Meeting Design Team and will be circulated via e-mail. Active feedback and suggestions are encouraged.

Attachment 1 November 28 and 29, 2007 (SURF 5) Participant Contact Information

Attachment 1 November 28 and 29, 2007 (SURF 5) Participant Contact Information

Participant	Affiliation
Kathy Adams	Writing Unlimited
Erica Becvar*	Air Force Center for Engineering and the Environment
Bob Boughton	California DTSC
Louis Bull	Waste Management
Brandt Butler	URS Corporation
Deni Chambers	Northgate Environmental Management
Carol Dona	Corps of Engineers
Dave Ellis**	DuPont
Catalina Espino Guerrero	Chevron
Mikos Fabersunne	California DTSC
Paul Favara**	CH2M Hill
Stephanie Fiorenza	British Petroleum
Mike Gill	USEPA Region IX
Deb Goldblum	USEPA Region III
Maureen Gorsen	California DTSC
Paul Hadley**	California DTSC
Elizabeth Hawley	Malcolm Pirnie, Inc.
John Hawthorne	Locus Technologies
Mike Houlihan	Geosyntec Consultants
David Hull	LFR, Inc.
Mike Kavanaugh	Malcolm Pirnie, Inc.
Lowell Kessel	GEO Inc.
Stephen Koenigsberg	WSP Environmental Strategies
Nick Lagos**	Lagos
Maryline Laugier	Malcolm Pirnie, Inc.
Alana Lee	USEPA Region IX
George Leyva	California Region II Water Board
Tayseer Mahmoud	California DTSC
Gary Maier	EarthTech
Chuck Newell	GSI Environmental
Joe Nicolette	CH2M Hill
Ralph Nichols	Savannah River National Laboratory
Jenny Phillips	USEPA Region IX
Dick Raymond**	Terra Systems
Charlie Ridenour	California DTSC
Mike Rominger**	DuPont Retiree
John Scandura	California DTSC
Erich Simon	San Francisco Water Board
Maile Smith	Northgate Environmental Management
Charlie So	Shaw Environmental & Infrastructure
Susan Solger**	Chevron

Attachment 1 November 28 and 29, 2007 (SURF 5) Participant Contact Information

Participant	Affiliation
Curt Stanley	Shell Global Solutions
Tiffany Swann	GSI Environmental
Carolyn Tatoian-Cain	California DTSC
Mike Vivas	California DTSC
Elizabeth Wells	San Francisco Water Board
John Wesnousky	California DTSC
Dave Woodward**	EarthTech

Notes:

* Individual participated via conference call

** Meeting design team member

Attachment 2 European SURF Activity Update

Partners	
Collaboration beginning in Europe new partners include – BP / Shell linking USA and World outside USA	:
 NICOLE* <u>http://www.nicole.org</u> who have been exploring the meaning and measurability of sustainability since 2002 (*Network for Industrially Contaminated land in Europe) SAGTA** <u>http://www.sagta.org.uk</u> (*Soi and Groundwater Technology Association UK) 	
 SURF Europe actively seeks partners with global interests willing to collaborate on framework development 	AIRE
Contaminated Land: Applications In Real Environments	CLA

Attachment 3 California DTSC Green Remediation Team Briefing

DTSC's Green Remediation Team

An Expanded List of Topics Technologies/Remedies

- Energy Consumption
- Liquid Waste Production
- Solid Waste Production
- Air Quality Impacts (Greenhouse Gases and Other)
- Product utilization (Recycling/Reuse Potential)
- Worker Safety
- Community benefit
- Duration Required
- Effectiveness in Reaching Treatment Objective
- Life-Cycle Cost

Life Cycle Framework

- Life Cycle Assessment (detailed/quantitative)
- Life Cycle Management (simple/qualitative)
- M.L. Diamond, C.A. Page, et al. Life-Cycle Framework for Assessment of Site Remediation Options: Method and Generic Survey, Environmental Toxicology and Chemistry, 18:4, p. 788-800, 1999.

Impact Factors

- Atmospheric Stressors
- Aqueous Stressors
- Thermal Stressors
- Physical Disturbances, Disruptions & Nuisances
- Resource Depletion

Atmospheric Stressors

- Airborne NOx & Sox (smog producers)
- Chloro-fluorocarbon vapors (ozone depleters)
- Greenhouse gas emissions
- Airborne particulates
- Toxic vapors/gases
- Water vapor (humidity)

Aqueous Stressors

- Non-toxic suspended solids (particulates)
- Toxic suspended solids (*bad* particulates)
- Non-toxic dissolved solids (minerals)
- Toxic dissolved solids (metals, organics)

Thermal Stressors

- Warm water (condensers)
- Warm water vapor (cooling towers)

Physical Disturbances/Disruptions & Nuisances

- Soil structure disruption
- Soil moisture removal/addition
- Noise
- Sub-toxic level, nuisance gas and vapor releases (odors)
- Traffic
- Visual landscape

Resource Depletion

- petroleum
- minerals
- land & space
- forest & grasslands
- surface water & groundwater
- atmospheric oxygen
- aqueous oxygen
- biological/microbiological organisms

Candidate Soil Treatment Technologies

- Bioventing (Soil Venting)
- Cap Site
- Consolidate and Cap
- Construct Landfill Cell
- Enhanced Biodegradation
- Excavate and Dispose
- Excavate and Treat
- Passive Venting
- Soil Vapor Extraction with Vapor-phase treatment

Candidate Water Treatment Technologies

- Air Sparging
- Chemical Oxidation, In Situ
- Containment Barrier
- Dual Phase Extraction
- Enhanced Biodegradation, In Situ
- Monitored Natural Attenuation
- Pump and Treat Groundwater
- Wellhead Treatment
- Zero Valent Iron (Permeable Reactive Barrier)

Life Cycle Evaluation Framework Outputs Degradation Project Design & Development > Project Deploymen Energy s & Ha Monitoring Proc Wat Contaminated Site Labo Noise/Nuisance Productio (visual, auditory, olefactory) Project Σ man He & Safet Physical Disturb Inputs Economic (Initial & O&M · Quality of Life (Individual & Commu

Attachment 4 Green Cleanup Certification

	The	Numbers	6
Program	Universe	Percent Construction Complete	Need Construction Complete
Superfund	1246	66%	424
RCRA 2008	1968	36%	1260
RCRA 2020	3746	19%	3038

Attachment 5 Making SURF Carbon Neutral

Attachment 5 How Might We Make SURF Carbon Neutral? Brainstorming Discussion

How might we make SURF carbon neutral?

- Use teleconferencing, net meeting, webcast, and video conferencing technologies (8)
- Collect contributions to buy carbon credits that offset our carbon emissions (4)
- Hold meetings near public transportation (2)
- Implement a remedy that reduce carbon emissions (2)
- Plant trees to offset carbon used (2)
- Bring your own water bottle and coffee mug
- Recycle trash (e.g., water bottles) and reuse materials (e.g., tent cards, name badges)
- Minimize travel once at meeting location (e.g., use public transportation, carpool)
- Camp vs. hotel use
- Share hotel rooms
- Dissolve SURF organization
- Hook up exercise bikes to grid and pedal toward consensus
- Rent hybrid cars
- Do not eat meat

Attachment 6 Net Environmental Benefit Analysis: Overview and Case Study

MEMORANDUM Former EPA Administrator SUBJECT: EPA Risk Characterization Program Carol Browner TO: Assistant Administrators Memorandum Associate Administrators Regional Administrators General Counsel Excerpts Inspector General First, we must adopt as values **transparency** in our decisionmaking process and **clarity** in communication with each other and the public regarding environmental risk and the uncertainties associated with our assessments of environmental risk. Second, because transparency in decisionmaking and elarity in communication will likely lead to more outside questioning of our assumptions and science policies, we must be more vigilari about ensuring that our core assumptions and science policies are <u>consistent</u> and comparable across programs, well grounded in science, and that they fall within a "zone of <u>reasonableness</u>." While I believe that the American public expects us to err on the side of protection in the face of scientific uncertainty, I do not want our assessments to be unrealistically conservative. We cannot lead the fight for environmental protection into the next century unless we use common the second secon sense in all we do I recognize that as you develop your Program-specific policies and procedures you are likely to need additional tools to fully implement this policy. C. Net Environmental Benefit Analysis (NEB/ CH2MHILL AU

CH2MHILL

				e eva	laat
		Scenario #	1		
Column 1	Column 2	Column 3	Column 4	Column 5	Column
Remedial Actions	Ecological Services (dSAYs)	Human Use Value (\$)	Human Risk Profile	Ecological Risk Profile	Cost (\$
ALT 1					
ALT 2					
ALT 3 ALT 4					

Net Environmental Benefit Analysis

Evaluate FS alternatives

CH2MHILL

 Formally quantify effects on natural resource services associated with the proposed remedial alternatives in relation to the incremental changes in risk

9

		NE	BA Sur	nmary	/
		Human Use Service <u>Loss</u> (NPV)	Human Risk Profile	Ecological Risk Profile	Cost of Remedial Alternative (NPV)
Alt	ternative 4 No Action	\$0.044 million	Not Protective	No Risk	\$0
Alt	ernative 1	\$0.044 million	Not Protective	No Risk	\$0.13 million
Alt	ernative 2	\$0.044 million	Not Protective	No Risk	\$1.3 million
Alt 3a	ernative	\$0.044 million	Protective	No Risk	\$1.9 million
Alt	ernative 3	\$0.032 million	Protective	No Risk	\$71.5 million

Attachment 7 Life-Cycle Analysis for Use in Evaluating Sustainable Remediation Metrics

Metrics for Sustainable Remediation

Many metrics have been considered for remediation at past SuRF meetings, for example

- GHG and climate change
- Air particulate emissions Fossil fuel depletion Natural resource consumption or recycling Ozone depletion
- Occupational Health and Safety Acidification
- Eutrophication

- Photochemical smog formation Human carcinogenic effects Land use or reuse (Brownfields) Water use (groundwater depletion, recharge, etc.)
- Contribution to future sustainability Fuel Use Natural resource depletion (aggregate, lime, wood, etc.)

How do we manage all of these factors? Do we consider them all?

Past SuRF Discussions on Metrics

- Focused on a few, key metrics
 - GHG emissions Energy Use
 - Resource Consumption
 - Human Safety
- Many other metrics have been suggested for inclusion in the analysis, but no methods suggested for how to quantitatively evaluate impacts or how to interpret impact assessments
- Land use
 - Property value Sequestration value
- LCA offers a method for defining which metrics to focus on and for performing an integrated interpretation of metrics

Life-Cycle Assessment - Overview

- A standardized tool for evaluating the overall impacts of a product or activity
- Can be used to compare alternative waste management, site cleanup, and P2 options
- Theoretically, can account for all inputs and outputs
- Outputs are related to a suite of impact characteristics (including the commons)
- ≻ 'Metrics' are a key element of LCA - SuRF efforts to date actually constitute the key initial steps of a LCA

Why Use Life Cycle Analysis? • Helps one consider the holistic environmental burdens resulting from products or processes

- Broadens the range of environmental issues considered when setting policies and making recommendations or decisions
- Inform consumers, industry, and government on the environmental tradeoffs of alternative products/services
- Accounts for temporal, spatial, and media impact shifts (more later on this topic)

History of LCA

- 1960's: Growing concerns over stocks of raw materials and energy resources. Example: Coca-Cola's evaluation of beverage containers.
- 1970's: Quantify resource use and environmental releases of products and alternatives to land disposal (recycling, composting)
- USA Resource and Environmental Profile Analysis (REPA) Europe Ecobalance
- 1990's: International Consensus
- Society of Environmental Toxicology and Chemistry (SETAC) ISO develops LCA standards (14040-43 Environmental Management - Life Cycle Assessment) Japan LCA Forum and the National LCA Project; US

- resurgence
- Development of TRACI USEPA's LCA tool

Elements of "Standard" LCA

- Define the Product Life Cycle i. -
- Gather Input and Output Data ii.
- Create Inventory of Impacts iii.
- iv. Characterize Impacts
- v. Interpret results (this is the tough part)

i. Define the 'Product' Life Cycle Standard LCA Stages Remediation Project LCA Stages Raw materials acquisition . Raw materials acquisition Materials processing Site Processing . Product manufacture Waste Management Product use . Transportation **Final Disposition** × Transportation, material resources and energy use

included at each stage

Cha	aract	ter	iza	ati	or	n: Example
Branner Chapper	har (a second)	April Special	Personal P	faller Repa Hangptor	Prosperate	 Impact of each stressor is
And Elements Providential Steep Descention Constituted	- Multip - Multip - Multip - Multip - Multip	313	1000		a a a a	quantified
Osenanisanus / Parliculature nar Contemporati tu Barline nar	 Of Age Of Age Mix-Age* Inst-Age Inst-Age Inst-Age Inst-Age Inst-Age 	10	100	48	12	 Impacts quantified according to life-cycle stage
Geodese	demonstragi entering					Stressors are categorized for future interpretation by category
Distribution Inter-Interaction (cast Application of interaction) solution	· may		- 1. 1.980			category
ngaller guilty exercise	· produce by			100.003		
Poult For Unit Journal Tot Car Joney Commution	 Knoch (K2) Markel (M2) Markel (M	100 100 100 100 100 100 100 100 100 100	80		1.00	(From Ontario Ministry of
bild Wass	 we hundles of high hundles of high should wate high should wate high should wate high 	đu.	181	114000	111	Environment, 1998)
Water Can Noticed 1 Set True	 Mitrage comparing Verwing Score for Stream for Stream for Stream for 	10 10 10 10 10 10 10 10		1 429 940		14
Link up to Bartalin.						

LCA of Catalytic Converter

- Seminal case study of LCA
- Cars are one of the predominate sources of air emissions - the catalytic converter is very effective in reducing emissions

19

21

methods was performed to evaluate the environmental lifecycle benefits/impacts – published in 'Journal of Cleaner Production'

A review of "end of pipe treatment"

This example is discussed today to illustrate LCA methodologies and outcomes

Interpretation Methods

<u>Environmental Priority Strategy (EPS)</u>. Environmental impacts are 'weighted' according to willingness to pay to protect the resources in question. Long-term impacts of waste not considered.

<u>Eco-Scarcity</u> 'Weights' environmental load based on critical load for an area versus actual load. This method tends to value solid waste generation as most important impact.

<u>Environmental Theme</u>. Groups loads by impact categories and 'weights' them according to assumed critical loads for that area over period of consideration.

Quantitative Results

Method		E	Bene	fits				Impac	ts	
	со	NOx	нс	СН4	Total	Waste	Energy	Materials	Air Emissions	Total
EPS	290	114	96	17	517		38	831	26	895
Eco- Scarcity		137	144		281	892	0.3	-	1.8	894
Env. Theme	125	114	103	1	343	1	1		2	4
			I				1			22

Interpretation

- Each arguably considered the most significant impacts and quantified them comparatively so that a decision could be made.
- The different evaluation methods show the sensitivity of the result to the qualitative "value" system used for interpretation.
- Each identified impacts that are important.
- Each identified the "hot spots" (especially manufacturing phase resource consumption).

Implications

- <u>Temporal Shift.</u> Benefits were gained after impacts were caused.
- <u>Spatial Shift.</u> Impacts occur far from the benefits.
- <u>Media Shift.</u> Air emissions reduction benefits vs.
 resource consumption and waste generation impacts.
- <u>Unintended Consequences.</u> Recent study has found platinum group metals (used in manufacture of catalytic converters) in soil along roadways

23

24

			o pio	utio	' ('')
able 9: Total average normalized	impacts by impact	categories for the grou	indwater treatment stag	e Chambrol	Natural Attenuation
Categories	Media	Pump & Treat	dicsparging	Oxidation	regenerate Provention
Global warmion	Air	0.57	0.025	3.67	0.003
Correct depiction	Air	1.07	0.026	27.1	0.003
Additation	Alr	30.1	2.76	2582	0.34
Execution	Alr	45.7	4.84	2.7 E 2	0.65
	Water	20.2	0.69	5.6E2	0.08
	Sol	2.67	4.3 E-3	2.54	4.7 E-4
Photochemical smoo	Air	85.7	4.88	2.4 E 2	0.61
Federality	Air	31.6	1,44	4.9 E 2	0.13
	Wator	3.8E5	2.8 E 4	9.7 E 5	1.9 E 3
	Sol	1.6 2 4	8.5 E 2	2.9115	1.1 E 2
Human health cancer	Air	7.0 E-6	1.1 E-7	8.2 E-5	4.1 E-9
	Water	0.001	9.2 E-5	0.003	6.1 E-6
	Sol	5.2 E-5	2.8 E-6	9.5 E-4	3.5 E-7
Human health offeria	Ait	2.2 E 2	8.78	6.1 E 2	0.7
Human health non cancer	Air	24.3	0.38	2.9 E 2	0.014
	Water	0.21	0.013	5.1	9.4 E-4
	Sol	7.1 E-3	4.0 E-4	0.13	4.8 E-5

ii. 8 Other publications (1999-2002)

- Found a variety of best treatments, results are very site- and contaminant-specific.
- Energy consumption and transport off-site tend to be drivers.
- Methodology strongly influenced the outcomes.

Findings Relative to SuRF

- Only a few categories tended to produce the greatest *quantifiable* impacts – resource acquisition, transportation, processing
- Some important impacts not quantifiable land use/stagnation, residual waste, habitat alteration
- Even after analysis, remedy selection still depends on a *qualitative* value assessment, for which there is no generally accepted methodology
- Low-impact remedies require time, fast remedies have higher impacts.

iii. Previous SuRF Discussions

- Metrics have included several key quantifiable stressors, such as atmospheric emissions (CO₂, NO_x, SO_x, PM₁₀), fuel use, residual waste
- Other metrics that cannot currently be quantified, such as land use, remedy efficiency, aesthetics (noise, visual impacts, etc.), social progress, etc., only addressed qualitatively
- A comprehensive methodology for performing integrated 'Interpretation' of the all relevant metrics has not been proposed/accepted yet

33

Discussion

- How should one select which metrics to consider in sustainability evaluation?
- Is there a need to better define the 'Interpretation' step as a logical follow-up to the metrics discussions of past SuRF meetings?
- How should the 'Interpretation' step be conducted subjectively or objectively? Highly quantitative or more qualitative?

34

• Can elements of LCA provide a framework for performing the 'Interpretation' step?

Attachment 8 Metrics: The Search for the Critical Few

Attachment 8 Metrics: Search for the Critical Few Brainstorming Discussion

- 1. What is holding you back from practicing more sustainable remediation practices right now?
 - Inherent agency skepticism or lack of interest (4)
 - Lack of time (remedial program managers, project managers) (4)
 - Lack of training or need for higher level of knowledge (3)
 - Lack of resources (especially for life-cycle analysis) (3)
 - Perception that sustainability evaluation involves high cost (3)
 - Lack of guidance (2)
 - Agency policy and regulations (e.g., antidegradation standards) (2)
 - Lack of easy-to-use and learn tool to measure and compare metrics quantitatively (2)
 - Lack of consensus on criteria that would be used to evaluate/approve remedy
 - Inexperience with analytical methods
 - Lack of understanding of whether the candidate remedy is among the most useful for making a difference
 - Lack of a definition of what "more sustainable" means
 - Regulatory/stakeholder preference for groundwater restoration
- 2. What two metrics are the most important to you?
 - Energy use (7)
 - Economic cost (4)
 - Greenhouse gas emissions (3)
 - Carbon emissions (3)
 - Environmental benefit (2)
 - Air emissions
 - Fuel use
 - Carbon footprint over project life cycle
 - Nonrenewable resource depletion
 - Resource impacts
 - Safety
 - Ecotox
 - Cost savings (costs used for something else or to restore something else)
 - Waste recycling
 - Contaminant destruction
 - Technology effectiveness
 - Time to meet cleanup objectives
 - Resource consumption (particularly water)

Attachment 9 A Cooperative Approach to a Remediation Solution with a Sustainability Component

Region 3 RCRA/DuPont Pilot

How We Work Together

Dave Ellis, DuPont Brandt Butler, URS Deb Goldblum, EPA Region 3 Bob Greaves, EPA Region 3 Mike Jacobi, EPA Region 3 Bryan Ashby, DNREC

Background

- May 1998 Region 3 and DuPont initiate semiannual meetings for RCRA Corrective Action sites
- November 2006 DuPont introduced the concept of sustainable remediation to Region 3 at semiannual meeting
- February 2007 Land Revitalization Office was tasked with developing clean energy and greenhouse reduction strategy for OSWER
- April 2007 DuPont/Region 3 RCRA began to test sustainability criteria on Martinsville, VA site/

Integrating Sustainability into Cleanups

- Goals
- Framework to assess sustainability
 Factors (common language)
- Measures
- Implementation strategy

April Meeting

April 10

- Discuss credit/debit approach
 - · Define cleanup objectives
 - · Brainstorm options for Unit H1

April 26

- · Revisit credit/debit approach
- Review Unit H1 initial calculations versus sustainability criteria

June Meeting

- · Revisit credit/debit approach
- · Identified data gaps in Unit H1 assessment
- · Discussed credit for contaminant destruction
- · Discussed merit of including efficiencies
- · Agreed to capture technologies eliminated
- · Initiated discussion on DPC

August Meeting

- · DPC sustainability analysis
- · H1 sustainability analysis for MNA
- · Revisit debits and credits
- · Initial discussions on CMS format

September Meeting

- Review for HQ contract support
- Discuss fitting sustainability criteria into CMS

November Meeting

- Agree upon remedy for Unit H1
- \circ Review options for DPC
- Finalize remedy selection matrix
- Detailed discussion on CMS format

Media or Impact	Credit (+)	Debit ¹ (-)
Greenhouse Gas (CO ₂ equivalents)	 Sequestration 	Generated by fuel consumed during activity Generated by manufacture of consumables
Resource Use		
Soil	 Reused-recycled soil or soil- substitute (e.g. crushed concrete) 	 All soil required Off-site disposal
Land	Beneficially reused (brownfields, wind field, solar field) Wetlands created or upgraded	 Permanently deed restricted
Water	Reused-recycled	 All water used or captured for treatme Water for dust control
Energy	 Renewable energy generated on-site 	 Required by remediation activity Required for manufacture of consumables
Occupational Risk	 Controls or measures to reduce hazardous exposure 	Exposure hours on-site Exposure hours for travel and delivery Road miles traveled for personnel and consumables 12

Media or Impact	Credit (+)	Debit ¹ (-)
Greenhouse Gas (CO ₂ equivalents)	 Sequestration in-situ Sequestration by plants Destroying GWP equivalents 	Generated by fuel consumed during activity Generated by manufacture of consumable Vegetation removed Ex-situ contaminant destruction
Resource Use		
Soil	Reused-recycled soil or soil-substitute Improved soil usability	 All soil required Off-site disposal Sterilized
Land	Unrestricted reuse Restricted reuse – i.e. renewable energy or brownfield Wetlands created or upgraded	 Permanently deed restricted Permanent access restriction
Water	 Restored aquifer or surface water body Reused-recycled 	All water used or captured for treatment Water for dust control Ongoing O&M (i.e. growing grass on caps)
Air	Odor control	Contaminant emissions PM10 and PM 2.5 Acid rain compounds
Energy Use	Renewable energy used for remedial action Renewable energy production	 Required by remediation activity Required for manufacture of consumables
Occupational Risk	 Controls or measures to reduce hazardous exposure 	Exposure hours on-site Exposure hours for travel and delivery Road miles traveled for personnel and consumables 13

Media or Impact	Credit (+)	Debit ¹ (-)
Greenhouse Gas (CO ₂ equivalents)	Sequestration in-situ Sequestration by plants Destroying GWP equivalents Immobilization of contaminants	Generated by manufacture of consumables Gequestration loss by permanent vegetation removal Generated by fuel consumed during activity Exsitu, on-site air emissions treatment Generated by off-site management of residuals Future release of contaminants (e.g. ??)
Resource Use		
Soil/Solids	Reused-recycled soil or soil-substitute Improved soil usability	All off-site soil required for remedy Off-site disposal
Land	Unrestricted reuse Restricted reuse i.e. renewable energy or brownfiel Wetlands created or upgraded Conservation easement for preserving trees/ecological resource	 Permanently deed restricted Permanent access restriction
Water – address/assess where a critical (local) issue	Restored aquifer or surface water body Reused-recycled Re-injected groundwater	Public or surface water use e.g. Water for dust control ongoing O&M (i.e. growing grass on caps) Groundwater captured for remediation – where critical
Air^^	Odor control	Contaminant emissions PM10 and PM 2.5 Acid rain compounds
Energy Use	Avoided energy from recovery of energy-rich waste materials Renewable energy created and used by remedy	Energy use by remediation activity Required for manufacture of consumables Ex-situ, on-site air emissions treatment Consumption by off-site management of residuals
Occupational Risk *	Controls or measures to reduce hazardous exposure	Exposure hours on-site Exposure hours for travel and delivery Road miles traveled for personnel and consumables

Media or Impact	Credit (+)	Debit ¹ (-)
Greenhouse Gases and E	inergy	
 Greenhouse Gases (CO₂ equivalents) 	Sequestration in-situ Sequestration by plants Destroying/immobilizing GWP equivalents	Generated by fuel used Generated by manufacture of consumables Generated by on-site air emissions treatment Generated by off-site management of residuals Sequestration loss by permanent vegetation removal
o Energy (kWh)	 Avoided energy use through reuse of energy-rich waste materials Renewable energy created and used by remedy 	Used for remediation activity Used for manufacture of consumables Used for on-site air emissions treatment Used for off-site management of residuals
Resources		
 Soil/Solid Material (tons) 	Reused-recycled soil or soil-substitute Improved soil usability	 All off-site soil required for remedy Off-site disposal
o Land (acres)	Cleanup supports options for use/reuse Wetlands created or upgraded Conservation easement for preserving trees/ecological resource	 Permanent deed and access restrictions severely limit use/reuse
o Water (gallons)	a Reused-recycled a Re-injected groundwater	Public or surface water use e.g. Water for dust control or ongoing O&M (i.e. growing grass on caps) Groundwater captured for remediation – where groundwater resources are critical
Site Specific Issues		
o Noise	Noise Control	a Noise
o Odor	Odor Control	a Odors
	- Units Constant	a Liabt

	Media or Impact	Credit (+)	Debit ¹ (-)
G	Greenhouse Gases & E	inergy	
c	Carbon Dioxide (CO ₂ equivalents)	 Sequestered by plants Sequestered in-situ Destroyed GWP equivalents 	generated by fuel used during remediation generated by manufacturing of consumables
С	Energy (kWh)	 Renewable energy generated on-site 	 Required by remediation Required for manufacturing of consumables
F	Resources		
С	Soil/Solid Material (tons)	 Reused-recycled soil or soil- substitute (crushed concrete) 	 Off-site soil required Off-site disposal
c	Land (acres)	 No limitations to anticipated use Wetlands created or upgraded Conservations easement 	Permanent limited use
c	Water (gallons)	□ Reused-recycled	public or surface water used groundwater for remedy – where resource is critical _16

Task analysis	– In-Situ i	¹³ ZVI-Clay Treatment
Task	Item	Quantities
Mobilization, Site Prep and Demobilization	Time Staff Equipment	15 days 11 - 1 Super, 1 Eng'r, 9 Operators & Laborers Man lift, forklifts (2), crane, mix head, others
Shallow Soil Mixing	Time Staff Equipment Materials	17 days 11 - 1 Super, 1 Eng'r, 9 Operators & Laborers Mix head/crane, fork lifts(2), excavator, batch plant 70 ton ZVI, 50 ton bentonite, 200 ton kiln dust 130,000 gal water
Deliver Materials	Materials	Soil – 25 miles ZVI, Clay, Kiln Dust – 150 miles
Soil Cover	Time Staff Material Equipment	2 days 6 - 1 Super, 1 Eng'r, 4 Operators & Laborers 400 ton (1 ft cover) Dozer, roller
VI82008 DUPONT CONFIDENTIAL		41 10 10;

Tack F	valuatio	n _ In-	citu 7	/I Troat	mont		Mivina
TUSK L	valuatio	// – III-	Situ Z	vincat	mem	- 501	iviiniig
Coil Mixing P	Do gradin	~					
Soli wixing a	Cubic East	69000	Water cal	120.000		Total On	Sito Miloago
Dave	17	00000	water, gai	130,000		Total Off	2550
Hours per Day	9						2000
	Total Gasoline						255
Gasoline Vehicle	Support	gal/day	Avg MPG	Site Mileage	Days	Hours	Gallons
	3	5	10	2550	17	459	255
-	Total Diesel						3,740
Diesel Equipment	Batch Plant	gal/day			Days	Hours	Gallons
	1	40			17	153	680
Diesel Equipment	Excavator	gal/day			Days	Hours	Gallons
	1	50			17	153	850
Diesel Equipment	Crane	gal/day			Days	Hours	Gallons
	1	50			17	153	850
Diesel Equipment	Mix Head	gal/day			Days	Hours	Gallons
	1	50			17	153	850
Diesel Equipment	Forklift	gal/day			Days	Hours	Gallons
	2	15			17	306	510
	Total Labor				-		1,683
	Operators and	Supervisors			Days	Hours	
	11				17	1,683	
	Additional F	-ield Crew			Days	Hours	

Consumable	Consumables – ZVI Clay Treatment												
Resource/Material	Units	Quantity	CO ₂ Conversion	Units	Total CO ₂ (lbs)								
Gasoline	Gallons	530	20.17	lbs	10,690								
Diesel	Gallons	5,358	25.80	lbs	138,245								
Contaminant Degradation	lbs	940	0.52	lbs	487								
GWP Change	lb-CO2/lb-X	940	-299.66	lbs	-281,680.0								
PVC	lb	0	2.58	lbs	0								
Steel	lb-CO2	0	2.02	lbs	0								
HDPE	lb-CO2	0	2.47	lbs	0								
Cement	lbs	0	571	lbs	0								
ZVI	lbs	140,000	1.3	lbs	184,800								
Bentonite	lbs	100,000	0.00	lbs	0								
Kiln Dust	lbs	400,000	0.00	lbs	0								
Potable Water	Gallons	130,000	0.00	lbs	0								
Total Groundwater	Gallons	0	0.0000	lbs	0								
Groundwater Retained in River/Aquifer	Gallons	0	0.0000	lbs	0								
Soil	lbs	800.000	0.00	lbs	0								

Technology Summary – ZVI Clay Treatment											
Carbon Dioxide Equivalents (Tons)		Resource Us	Resource Usage								
Gasoline	5	Potable Water (gal)	130,000	Gasoline (gal)	530						
Diesel	69	Total Groundwater (gal)	0	Diesel (gal)	5,358						
Contaminant Degradation	0.24	Groundwater Retained in River/Aquifer (gal)	0	PVC (Total lb)	0						
PVC	0	Soil (tons)	400	Steel	0						
Steel	0	Landfill Space (ac-ft)	0	HDPE	0						
HDPE	0	Land (Acre)	0.25	Cement	0						
GranulatedCarbon	0	Air	0	Concrete	0						
Cement	0			ZVI	70						
Concrete	0			Bentonite	50						
ZVI	92			Kiln Dust	200						
TOTAL	167			Asphalt	0						
lb-Contaminant/lb- CO2	0.0028125			Grid Energy	0						
GWP Change	-140.8			Propane	0						
ADJUSTED TOTAL	26			Propane	0						

Summary of Technology Assessments											
	Parameters	ZVI-Clay In-Situ Treatment	Excavation & Off-Site Disposal	Ex-Situ Thermal Desorption	Soil Vapor Extraction	Capping	MNA				
Greenhouse Gas	i (ton - CO ₂)	170	250	590	160	24	5				
Adjusted 0 (ton - C	Greenhouse Gas O ₂ Equivalents)	26	250	450	19	24	0				
Efficiency (lb-contaminant destroyed/lb CO2)		0.003	0.000	0.0008	0.003	0.000	0.088				
Energy Usage (k	Wh)	790,000	910,00	2,400,000	390,000	58,000	21,000				
Occupational Risk	Exposure Hours Mileage	3,300 8,500	4,400 110,000	7,100 12,000	4,500 23,000	820 1,600	1,000 8,600				
	Groundwater (gal)	130,000	0	0	0	0	0				
	Soil (ton)	400	3,400	400	170	1,200	0				
	Landfill Space (acre-ft))	0	2	o	0	0	0				
	Land (Acre)	0.3	0	0.3	0.3	0.3	0				
	PM ₁₀ (ton)	8	66	0	0	2	5				
18/2008 DUPONT CONFIDEN	TIAL						QUPON				

	Unit	H1 -	- Rer	nedy	y Sel	ectior	n Matr	ix				18
	Protect HH &E	Control Sources	Meet Cleanup Objectives	Long-term reliability	Reduction of T, M, V	Short-term effectiveness	Ease of implementation	Cost	Community acceptance	State acceptance	Susta	inability
Source Are	a Remedies											
ZVI-Clay In-Situ Treatment	Yes, when combined with MNA	Yes, by treatment	Yes	High	High due to treatment	32 days 3,300 hours 8,500 miles	Moderate	\$\$	Acceptable, pending public notice	Acceptable, pending review	CO ₂ Adj. CO ₂ Efficiency: Water	170 lbn 26 lbn 0.003 130,000 gal
Excavation & Off-Site Disposal	Yes, when combined with MNA	Yes, by removal	Yes	High	Nane	25 days 4,400 hours 110,000 miles	Simple	\$\$	Acceptable, pending public notice	Acceptable, pending review	CO ₂ Adj. CO ₂ Efficiency: Water	250 ton 250 ton 0.000 0 gal
Ex-Situ Thermal Desorption	Yes, when combined with MNA	Yes, by treatment	Yes	High	High due to treatment	53 days 7,100 hours 11,800 miles	Complex	\$\$	Acceptable, pending public notice	Acceptable, pending review	CO ₂ Adj. CO ₂ Efficiency: Water	5909 tan 450 tan 0.008 0 gal
Soll Vapor Extraction	Yes, when combined with MNA	Yes, by treatment	Yes	Hgh	Moderate	2 years 6,700 hours 17,000 miles	Moderate	\$\$	Acceptable, pending public notice	Acceptable, pending review	CO ₂ Adj. CO ₂ Efficiency: Water	160 ton 19 ton 0.003 0 gal
Capping	Yes, when combined with MNA	Yes, by cover	Yes	Moderate	Moderate, eliminate mobility	13 days 820 hours 1,600 miles	Simple	s	Acceptable, pending public notice	Acceptable, pending review	CO ₂ Adj. CO ₂ Efficiency: Water	24 ton 24 ton 0.000 0 gal
1/16/2006 DU	PONT CONFID	ENTIAL									,	AU PURC

Technology	Base Case	
Capping	3 ft soil cap with geomembrane and geotextile 0.18 acre	
Excavation	3,400 tons Replace with clean fill	
ZVI-Clay	- 3,400 cy (100' dia x 8' deep) - 130,000 gallons water - ZVI - 70 tons Bentonile - 50 tons - Kiln dust - 300 tons	
Soil-Vapor Extraction	25 points Carbon treatment 2 years operation	
Thermal Treatment	- 3,400 tons	

Summary	of Base-C	ase Te	chnolog	y Asses	ssments	
	Parameters	Capping	Excavation & Off-Site Disposal	ZVI-Clay In-Situ Treatment	Soil Vapor Extraction	Ex-Situ Thermal Desorption
Greenhouse Gas	Greenhouse Gas (ton - CO ₂)		250	170	160	590
Adjusted Greenhouse Gas (ton - CO ₂ Equivalents)		24	250	26	19	450
Efficience	Efficiency (lb-contaminant destroyed/lb CO2)		0.000	0.003	0.003	0.0008
Energy Usage (k	Wh)	58,000	910,000	790,000	390,000	2,400,000
Occupational	Exposure Hours	820	4,400	3,300	4,500	7,100
Risk	Mileage	1,600	110,000	8,500	23,000	12,000
	Groundwater (gal)	0	0	130,000	0	0
	Soil (ton)	1,200	3,400	400	170	400
	Landfill Space (acre-ft))	0	2	0	0	0
	Land (Acre)	0.3	0	0.3	0.3	0.3
	PM10 (ton)	2	66	8	20	12

ZVI-Clay Te	chnolo	gy Sen:	sitivity				
Measures	Base Case	10X Soil Volume	100X Soil Volume	10X COC Mass	100X COC Mass	100% PCE	100% CFC-1
GHG, ton	170	1,500	15,000	170	190	170	170
Adjusted GHG, ton	26	67	500	-1,200	-14,000	170	-2,000
Energy Usage (kWh)	790,000	7,200,000	71,000,000	790,000	790,000	790,000	790,00
Water (gallons)	130,000	1,300,000	13,000,000	130,000	130,000	130,000	130,00
Soil (tons)	400	2,000	20,000	400	400	400	400
Exposure Hours	3,300	19,000	180,000	3,300	3,300	3,300	3,300
Total Mileage	8,500	35,000	300,000	8,500	8,500	8,500	8,500
PM ₁₀ (ton)	7.6	38	340	7.6	7.6	7.6	7.6
NOx (ton)	1.7	13	120	1.7	1.7	1.7	1.7
SOx (ton)	0.14	1.1	11	0.14	0.14	0.14	0.14
2008 DUPONT CONFIDENTIAL							CUPON

								10
	Capping							
	Measures	Base Case	10X Soil Volume	100X Soil Volume	10X COC Mass	100X COC Mass	100% PCE	100% CFC-11
	GHG, ton	24	120	1,200	24	24	24	24
	Adjusted GHG, ton	24	120	1,200	24	24	24	24
	~ Area							
1/19	2008 DUPONT CONFIDENTIAL							QUPIN)

In-situ ZVI-Cla	ay Tre	atment					12
Measures	Base Case	10X Soil Volume	100X Soil Volume	10X COC Mass	100X COC Mass	100% PCE	100% CFC-11
GHG, ton	170	1,500	15,000	170	190	170	170
Adjusted GHG, ton	26	67	500	-1,200	-14,000	170	-2,000
~ Volume							
1/19/2005 DUPONT CONFIDENTIAL							QUPIND

Measures	Base Case	10X Soil Volume	100X Soil Volume	10X COC Mass	100X COC Mass	100% PCE	100% CFC-1
GHG, ton	160	700	1,200	250	950	160	160
Adjusted GHG, ton	23	-700	-13,000	-1,200	-13,000	160	-2,00
Treatment time	e and vap	oor controls	s are signif	icant facto	rs		

Base Case	10X Soil Volume	100X Soil Volume	10X COC Mass	100X COC Mass	100% PCE	100 CFC-
121	1,200	12,000	190	880	120	12
-20	210	2,100	-1,200	-13,000	120	-2,1
e and vap	por control:	s are signif	icant facto	rs		
	Base Case 121 -20	Base 10X Case Volume 121 1,200 -20 210	Base Case 10X Soil 100X Soil 121 1,200 12,000 -20 210 2,100	Base Case 10X Soil 100X Soil 10X Coc 121 1,200 12,000 190 -20 210 2,100 -1,200	Base 10X 100X 10X 100X Case Soil Soil COC COC Volume Volume Mass Mass 121 1,200 12,000 190 880 -20 210 2,100 -1,200 -13,000	Base 10X Soil 100X Soil 10X COC 100% COC 100% PCE 121 1,200 12,000 190 880 120 -20 210 2,100 -1,200 -13,000 120

Greenhou	se Ga	s Sensi	tivity				15
Technology	Base Case	10X Soil Volume	100X Soil Volume	10X COC Mass	100X COC Mass	100% PCE	100% CFC-11
Capping	24	120	1,200	24	24	24	24
Excavation	250	2,700	26,000	250	250	250	250
ZVI-Clay	170	1,500	15,000	170	190	170	-2,000
Soil Vapor Extraction	160	700	1,200	250	950	160	-2,000
Thermal Treatment	120	1,200	12,000	190	880	120	-2,100
Values are Total Carbon Dioxide,	except 100%	CFC-11 Case (Adjusted Carbo	n Dioxide)		1	
No one clear w Capping Excavation ZVI-Clay SVE – and Themas	nner - s - area on - volu - volume ea, mas	cale of re ume e s	medy dete	ermines n	ninimal fo	otprint	
Thermal -	- area, r	nass					QUPONT;

Attachment 10 A Revised Corrective Measures Study Outline based on Sustainability

Expedited Corrective Measure Study (CMS) - AOC DPC 1st Meeting at DuPont - April 10, 2007 Review of RFI conditions at AOC DPC. State, EPA, DuPont, consultants brainstorming on technologies that might be applicable to VOC contaminated soil and groundwater.

0	utline for CMS – Detail Look at Section 3
3.0	CORRECTIVE MEASURES STUDY – UNIT H1 Site Characteristics and History of Unit
	3.1 Development of Corrective Action Alternatives 3.1.1 Description of Corrective Action Objective identify the exposure nothways that should be addressed by CMS
	3.2 Screening for exposite parmages that another to tackase of young near the standards) identify technologies, which are appropriate. 3.2.1 (dentify technologies, which are appropriate. 3.2.1 (dentification of Potential Corrective Measure Alternatives determine which technologies appear suitable for the site.
	Sublation of the Corrective Measure Alternatives (against balancing criteria) evaluate each corrective measure alternative that is suitable (from Section 3.2.1) balancing factors Long-term Effectiveness Long-term reflactiveness Long-term reflactiveness Inglementability Reduction of toxicity, mobility, or volume of waste Implementability Sustainability Cost Institutional (State and community) acceptance
	(See Example Table 2 – Kemedy Selection Matrix) 3.4 Recommended Corrective Measure (See Example Table 3 – Summary of Selection)

Remedies	Protect HH &E	Control Sources	Meet Cleanup Objectives	Selection
Bio-barrier	Unlikely	Unlikely, source concentrations high (bio not very effective at high concentrations)	Unlikely	Poor
Bioventing	Unlikely	Uncertain, oxygen demand will be very high due to waste oil in source	Uncertain. Reduces some constituents, but source concentrations likely inhibit degradation.	Poor
Capping	Yes, when combined with MNA	Yes, by eliminating migration	Yes (constituents remain)	Good
Chemical Oxidation (In Situ)	Unlikely	Uncertain, oxygen demand will be very high due to waste oil in source. CFC-11 expected to be highly resistant to oxidation	Uncertain. Other constituents, including waste oils may interfere with reaction	Poor
Chemical Reduction	Unlikely	Source is already highly reduced. CFC-11 appears resistant to reduction.	Uncertain. Other constituents, including waste oils may interfere with reaction.	Poor
Excavation & Off- Site Disposal	Yes, when combined with MNA	Yes, by removal	Yes (complete removal)	Good
Ex-Situ Thermal Desorption	Yes, when combined with MNA	Yes, by treatment	Yes (some constituents remain, metals)	Good
In Situ Bioremediation	Unlikely	Unlikely, No evidence of degradation to CFC-11	Unlikely	Poor
Options graded "Good	are considered adequa	le treatment options and are passed onto the selecti	on screening, which factors in balancing criteria.	

Г

	Protect HH &E	Control Sources	Meet Cleanup Objectives	Long-term reliability	Reduction of T, M, V	Short-term effectiveness	Ease of implementation	Cost	Community acceptance	State acceptance	Sustainability
Chemical Oxidation	Yes, when combined wth plume treatment	Yes	Moderate	Moderate	High due to treatment	(strong reagents) 502 Hrs 2,700 miles	Moderate	55	Acceptable, pending Public Comment	Acceptable , pending Public Comment	CO ₂ 101 ton Adj.CO ₂ 101 ton Efficiency: 0.0008
Soll Vapor Extraction	Yes, when combined with plume treatment	Yes	Yes	High	High due to treatment	(high exp hrs) 3,000 Hrs 4,500 miles	Moderate	55	Acceptable, pending Public Comment	Acceptable , pending Public Comment	CO ₂ 105 ton Adj. CO ₂ 105 ton Efficiency: 0.0008
Bio Sweep	Yes, when combined with plume treatment	Yes	No	Low	High due to treatment	(high exp hrs, inert material handling) 1,200 Hrs 6,800 miles	Simple	55	Acceptable, pending Public Comment	Acceptable , pending Public Comment	CO ₂ 16 tan Adj. CO ₂ 16 tan Efficiency: 0.005

	Protect HH &E	Control Sources	Meet Cleanup Objectives	Long-term reliability	Reduction of T, M, V	Short-term effectiveness	Ease of implementation		Community acceptance	State acceptance	Sustainability
Outfall Pump & Treat	Yes	NA	Yes	High	High due to treatment	Exposure 8,500 Hrs Highway 25,000 mi	Simple	\$\$\$\$	Acceptable , pending Public Comment	Acceptable , pending Public Comment	CO ₂ 1,037 ton Adj. CO ₂ 1,034 ti Efficiency: 0.0002
Groundwater Pump & Treat	Yes	NA	Yes	High	High due to treatment	Exposure 12,000 Hr Highway 14,000 mi	Moderate	\$\$\$\$\$	Acceptable . pending Public Comment	Acceptable , pending Public Comment	CO ₂ 996 to Adj. CO ₂ 994 ton Efficiency: 0.0002
Constructed Wetlands	Yes	NA	Yes	Moderate	Moderate	Exposure 2,900 Hrs Highway 34,000 mi	Complex	55	Acceptable , pending Public Comment	Acceptable , pending Public Comment	CO ₂ 89 ton Adj. CO ₂ 87 ton Efficiency: 0.002
Phyto Remediation	Yes	NA	Yes	Low	Low	Exposure 3,600 Hr Highway 11,000 mi	Simple	55	Acceptable , pending Public Comment	Acceptable , pending Public Comment	CO ₂ 22 to Adj. CO ₂ 22 ton Efficiency: 0.008
Bio Treatment	Yes	NA	Yes	High	High due to treatment	Exposure 1,700 Hr Highway 10,000 mi	Moderate	\$	Acceptable , pending Public Comment	Acceptable , pending Public Comment	CO ₂ 18 tor Adj. CO ₂ 16 tor Efficiency: 0.009

Area	Media	Selected Technology	Comment
H1	Soil	Zero-Valent Iron/Clay	Source treatment destroys chlorinated VOCs and stabilizes others Cap reduces infiltration Clay reduces soil permeability Future source leaching eliminated Balancing criteria best met
H1	Groundwater	Monitored Natural Attenuation	 Coupled with source treatment Little plume mass in bedrock aquifer or sorbed to formation

Attachment 11 Preparing a White Paper about Sustainable Remediation

Attachment 11 Draft White Paper Outline

Title: Integrating Sustainability Principles, Practices, and Metrics into Remediation Projects

General Outline:

Executive Summary Introduction and Scope Background Description and Current Status of Sustainability in Remediation Sustainability Concepts and Practices in Remediation A Vision for Sustainability The Impediments and Barriers Vignettes of Success Summary, Conclusions, and Recommendations Acknowledgements References

Acronym List Glossary

Figures, tables, and appendices will be included as needed.

Attachment 12 Applying Sustainability to Small Sites

Attachment 12 Applying Sustainability to Small Sites Brainstorming Discussion

How can we apply sustainability to smaller sites?

- Categorize by function/business
- Scale
- Limit the number of impacts
- Use sensitivity modeling approach
- Stakeholder characteristics (diversity)
- Re-development opportunities
- Potential indoor air issues
- More state involvement (local) vs. federal agencies
- Funding availability low
- After categorizing, identify key technologies for those sites
- PRP knowledge
- Raise general awareness
- Will have to be driven by regulators or LSP
- If it becomes accepted practice of regulatory approval process (already happening in counties in California), leverage what is already being done
- Focus on low-hanging fruit
- Guidance to allow them to shut off with short-term monitoring
- Leverage small site evaluation in Europe
- Include section in white paper—need to include
- Different rules in different locations—air emissions
- Include/exclude sites with groundwater contamination?